Pages

Friday, March 25, 2016

Mobile Phone App for Parkinson’s Patients Tests New Model for Data Sharing

With mobile phones now practically the third arm of modern (wo)man, researchers have begun to harness the processing power of these increasingly ubiquitous devices for data collection. Because people carry their phones everywhere, they can capture behavioral data on a daily basis. Researchers led by Andrew Trister and Stephen Friend at Sage Bionetworks, a nonprofit research organization in Seattle, developed a mobile phone app called mPower that lets Parkinson’s patients record their movement and memory over time. Such data chronicles the day-to-day variability in symptoms and may help researchers spot trends more quickly, Trister and Friend report in the March 3 Scientific Data. They intend to analyze mPower data to understand medication effects on Parkinson’s symptoms.
“This seems to me an avenue of research well worth pursuing,” John Harrison at Metis Cognition, Wiltshire, U.K., wrote to Alzforum (see full comment below). “This approach may yield interesting information about patient behavior, as well as their responses to treatment.” For example, with advancing disease, Alzheimer’s patients tend to stay at home more, and any device with a GPS could track this behavioral change, Harrison noted.
Along with the publication of their paper, the authors released the first batch of data from the mPower study to researchers worldwide. This was possible because 78 percent of the 12,000 people who participated in the study agreed that qualified researchers could access their data. Allowing research participants themselves to make this decision, a priori, provides a new model that might streamline the process of data sharing, Friend and co-author John Wilbanks, also at Sage, suggest in a Nature Biotechnology editorial. Normally, data-sharing decisions are made by researchers through formal mechanisms such as data access committees. While scientists tend to shy away from saying so on the record, privately, many complain that these committees and their attendant bureaucracy can slow or limit the flow of information to other scientists. mPower represents a pilot project for a new approach to data sharing.
Several academic and industry groups are developing mobile phone apps to collect data from people with various neurodegenerative diseases (see Jun 2012 newsDec 2012 news). Being a movement disorder, Parkinson’s disease is particularly suited to this type of data collection. Pilot studies have reported success in monitoring various PD symptoms via remote digital devices such as smartphones (see Goetz et al., 2009Arora et al., 2015). 
These studies inspired the researchers at Sage. Friend co-founded the nonprofit in 2009 along with Eric Schadt of Mount Sinai School of Medicine, New York, to foster collaborative research and develop better models for complex diseases. The organization focuses particularly on neuroscience and cancer research. Trister and Friend wondered if mobile phones could improve disease management by capturing the variability in symptoms and how medications affect symptoms. To test this idea, first author Brian Bot and colleagues developed mPower for the iPhone, using Apple’s ResearchKit software. The authors released the free app in the United States in March 2015 through the Apple App Store. Healthy people as well as Parkinson’s patients were encouraged to download and use it.
Before using the app, participants must read through informed consent materials and decide whether to release their data only for Bot and colleagues’ study, or much more broadly to researchers worldwide. During the first six months after the app’s release, 14,684 people downloaded it and completed the enrollment process. Later, 2,483 people withdrew from the study, and 2,681 opted to share data only with the mPower team. This left data from 9,520 people in the broadly available set. Of those people, 6,805 completed a baseline survey. In that group, 1,087 said they had been diagnosed with Parkinson’s, 5,581 had not, and 137 provided no information on diagnosis.
Once enrolled, participants were asked to fill out the Parkinson Disease Questionnaire 8 and a subset of the Movement Disorder Society Universal Parkinson Disease Rating Scale (MDS-UPDRS) every month. In addition, the app prompted them to complete four activities three times each day: a memory test, walking a short distance, tapping the screen for 20 seconds to test hand coordination and speed, and saying “aaaah” for 10 seconds to track the strength of their voice. The app requested that participants complete one session before taking their medication, one shortly after taking it, and the third at another time of day.
In this initial study, few participants followed through. Only 898 users, of whom 150 were Parkinson’s patients, completed tasks on at least five separate days. About 20 percent of those stuck with the tasks for more than a month. Even so, participants generated hundreds of statistical measures that are allowing the authors to analyze differences in how people respond to medication, Trister wrote to Alzforum. For example, the researchers are investigating how medication affects tremor, as measured by the accuracy of tapping a target spot, versus movement speed and gait, and whether there are distinct patterns of response for different people. The authors hope the findings might eventually improve symptom management. Trister noted that he is working to make the app more useful to patients and to build a community around the study. “We hope these incentives will reduce the attrition rate,” he wrote.
Data for All
The authors released the first six months of data, stripped of any identifying information, through Synapse, a data-sharing service run by Sage Bionetworks. To access the data, outside researchers must establish an account with Synapse, explain what they intend to do with the data, and complete an ethics questionnaire. In addition, they must agree not to try to identify participants, not to sell the data or use it for marketing purposes, and to publish any results in open-access journals.

As Wilbanks and Friend explained in their Nature Biotechnology editorial, they chose this format to facilitate broader use of the data than is typically allowed by a data access committee. Such committees are a common means of controlling data sharing. Usually formed at the universities where the principal investigators work, committees evaluate data requests on a case-by-case basis. However, because these committees represent the interests of the principal investigator, data requests can be met with “high friction,” Friend told Alzforum. “The literature indicates that data access committee mechanisms can encode conflicts of interest, leading to data withholding,” Wilbanks and Friend noted in their editorial (see also Shabani et al., 2015). 
Others agree that data sharing, particularly in human genetics, often falls short. A 2015 Nature editorial cited the example of a breast cancer project, BRCA Share, that touted the ideals of open data while withholding its findings from the public database ClinVar, run by the National Institutes of Health. “In truth, [BRCA Share] creates more of a walled garden of genetic data than an open field,” the editorial concluded.
Similar problems exist in the neurodegeneration field. For some diseases, genetic data sharing has worked well, for example in the Parkinson’s database PDGene. On the other hand, an update of AlzGene, hosted on Alzforum, has been delayed by difficulty obtaining data published in 2013 (see AlzgeneLambert et al., 2013). 
Some investigators cite participant consent as a roadblock to sharing; however, many research participants express frustraton that data generated from their time, effort, and tissue donations are not shared more readily among scientists. Alison Goate at Mount Sinai School of Medicine wrote to Alzforum, “All Alzheimer’s Disease Research Center/Alzheimer’s Disease Center recruitment currently uses a consent that enables broad sharing of data.” This is mandated by the NIH. Consent is only an issue for genetic samples collected a long time ago, Goate added. For his part, Friend believes that there is a will to share. “I think the Alzheimer’s world wants to be the most cutting-edge place for the sharing of genetic data and for working together as a community. [That vision] hasn’t been fully realized yet,” he told Alzforum.


Data sharing requires standardization and privacy safeguards, researchers noted. Friend pointed out that for general use, data must include the context in which it was gathered, such as whether Parkinson’s movement tests were recorded before or after medication. Data has to be properly annotated, he stressed. For sensitive genetic data, researchers will have to be particularly careful to scrub identifying information and to ensure data is used properly, Friend added. He believes this can be accomplished through streamlined mechanisms like those in the mPower study. In their editorial, Wilbanks and Friend conclude, “Our experience suggests that participants who give their time and their sensitive personal information to researchers often assume that their data will be distributed widely to the full research community, not ‘owned’ as an asset to extract value from, solely by the researchers who happened to collect it.”—Madolyn Bowman Rogers
http://www.alzforum.org/news/research-news/mobile-phone-app-parkinsons-patients-tests-new-model-data-sharing

No comments:

Post a Comment