WELCOME TO OUR PARKINSON'S PLACE!
I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.
I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.
I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,
I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.
THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.
PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..
I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.
I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.
THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS
THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!
TRANSLATE
Friday, March 23, 2018
Good Shepherd leases space from Penn State Health St. Joseph for 14-bed inpatient rehabilitation facility
Man with Parkinson's Disease uses these props to spread awareness
To see video:
http://www.mytwintiers.com/news/local-news/man-with-parkinsons-disease-uses-these-props-to-spread-awareness/1070165057
Deep Brain Stimulation for Parkinson’s Disease: The Past and What the Future Holds
New PET Tracer with Potential to Diagnose Parkinson’s to Be Tested in First-in-Human Study
The gene causing new brain disorder
Launch of Parkinson’s Singing Group in Forth Valley
Domain Therapeutics receives $125m to assign its intellectual property
Companies
Thursday, March 22, 2018
New Finding on Parkinson’s Gene Mutation Alters View of What Causes the Disease
Source: Manu5/Wikimedia
- Scientists report that the most common Parkinson's gene mutation may change how immune cells react to generic infections like colds, which in turn trigger the inflammatory reaction in the brain that causes Parkinson's. Their study (“Mutant LRRK2 Mediates Peripheral and Central Immune Responses Leading to Neurodegeneration In Vivo”), published in Brain, contradicts the long-held view that Parkinson's was a disease that starts in the brain, destroying motion centers and resulting in the tremors and loss of movement.“Missense mutations in the leucine rich repeat kinase 2 (LRRK2) gene result in late-onset Parkinson’s disease. The incomplete penetrance of LRRK2 mutations in humans and LRRK2 murine models of Parkinson’s disease suggests that the disease may result from a complex interplay of genetic predispositions and persistent exogenous insults. Since neuroinflammation is commonly associated with the pathogenesis of Parkinson’s disease, we examine a potential role of mutant LRRK2 in regulation of the immune response and inflammatory signaling in vivo. Here, we show that mice overexpressing human pathogenic LRRK2 mutations, but not wild-type mice or mice overexpressing human wild-type LRRK2 exhibit long-term lipopolysaccharide-induced nigral neuronal loss. This neurodegeneration is accompanied by an exacerbated neuroinflammation in the brain,” write the investigators.“The increased immune response in the brain of mutant mice subsequently has an effect on neurons by inducing intraneuronal LRRK2 upregulation. However, the enhanced neuroinflammation is unlikely to be triggered by dysfunctional microglia or infiltrated T cells and/or monocytes, but by peripheral circulating inflammatory molecules. Analysis of cytokine kinetics and inflammatory pathways in the peripheral immune cells demonstrates that LRRK2 mutation alters type II interferon immune response, suggesting that this increased neuroinflammatory response may arise outside the central nervous system. Overall, this study suggests that peripheral immune signalling plays an unexpected—but important—role in the regulation of neurodegeneration in LRRK2-associated Parkinson’s disease, and provides new targets for interfering with the onset and progression of the disease.”"We know that brain cells called microglia cause the inflammation that ultimately destroys the area of the brain responsible for movement in Parkinson's," said Richard Smeyne, Ph.D., director of the Jefferson Comprehensive Parkinson's Disease and Movement Disorder Center at the Vickie and Jack Farber Institute for Neuroscience. "But it wasn't clear how a common inherited mutation was involved in that process, and whether the mutation altered microglia."Together with senior author Dr. Smeyne, first author Elena Kozina, Ph.D., looked at the mutant version of the LRRK2 gene. Mutations in the LRRK2 gene are the most common cause of inherited Parkinson's disease and are found in 40% of people of North African Arab descent and 18% of people of Ashkenazi Jewish descent with Parkinson's. However, there's been controversy around the exact function of the LRRK2 gene in the brain."We know that gene mutation is not enough to cause the disease," said Dr. Kozina, a postdoc at Jefferson (Philadelphia University and Thomas Jefferson University). "We know that twins who both carry the mutation won't both necessarily develop Parkinson's. A second 'hit' or initiating event is needed."Based on his earlier work showing that the flu might increase risk of Parkinson's disease, Dr. Smeyne decided to investigate whether that second hit came from an infection. Suspecting that the LRRK2mutations might be acting outside of the brain, the researchers used the outer shell of bacteria (lippopolysaccharide, or LPS) that causes an immune reaction. LPS itself does not pass into the brain, nor do the immune cells it activates, which made it ideal for testing whether this second hit was acting directly in the brain.When the researchers gave the bacterial fragments to the mice carrying the two most common LRRK2gene mutations, the immune reaction became a cytokine storm, with inflammatory mediators rising to levels that three to five times higher than a normal reaction to LPS. These inflammatory mediators were produced by T and B immune cells expressing the LRRK2 mutation.Despite the fact that LPS did not cross the blood–brain barrier, the researchers showed that the elevated cytokines were able to enter the brain, creating an environment that caused the microglia to activate pathologically and destroy the brain region involved in movement."Although more tests are needed to prove the link, as well as testing whether the same is true in humans, these findings give us a new way to think about how these mutations could cause Parkinson's," said Dr. Smeyne. "Although we can't treat people with immunosuppressants their whole lives to prevent the disease, if this mechanism is confirmed, it's possible that other interventions could be effective at reducing the chance of developing the disease."https://www.genengnews.com/gen-news-highlights/new-finding-on-parkinsons-gene-mutation-alters-view-of-what-causes-the-disease/81255613
Gocovri Significantly Improves Dyskinesia and ‘Off’ Time in Parkinson’s, New Analysis Confirms
Calorie restriction trial in humans suggests benefits for age-related disease
FoxFeed Blog: National Institutes of Health Receives $3 Billion Spending Boost
The Michael J. Fox Foundation Funds Three Research Teams to Seek Common Biological Pathways Underpinning Environment, Genetics and Aging in Parkinson's Onset and Progression
SOURCE The Michael J. Fox Foundation
- Environmental and Genetic Mechanisms of Parkinson's will seek out links between environmental and genetic triggers of disease. This project will investigate the mechanisms through which neurotoxins cause neurodegeneration and how these pathways interact with known genetic factors such as LRRK2, a leading genetic cause of PD."It is an honor to be selected by The Michael J. Fox Foundation to participate in this unique collaborative project. Our work focuses on the commonalities of Parkinson's disease causation, whether it's due to genetic mutations or environmental exposures. We hope that by defining these common mechanisms, we will know how best to intervene therapeutically to slow or stop disease progression," said Principal Investigator J. Timothy Greenamyre, MD, PhD, of the Pittsburgh Institute for Neurodegenerative Diseases and the University of Pittsburgh.
- Foundational Data Initiative: Mapping Genetic Effects in Parkinson's will grow nerve cells from induced pluripotent stem cells and use advanced "omics" techniques (e.g., genomics, proteomics, metabolomics) to map how various genetic changes lead to cellular and molecular changes associated with PD."We are pleased to be part of a truly multidisciplinary group that brings together experts with a common goal to produce foundational data that will accelerate the field's ability to understand the disease processes and to find logical places for intervention," said Principal Investigator Andrew Singleton, PhD, of the National Institute on Aging, part of the National Institutes of Health.
- Aging and Parkinson's Disease will investigate how cellular aging and related DNA and mitochondrial damage contributes to neurodegeneration. Advanced gene-editing techniques will allow this team to investigate these processes in both rodent and human cells."I'm honored and extremely grateful to MJFF for this award. It gives us the opportunity to do the kind of innovative, interdisciplinary science that can lead to conceptual breakthroughs and identification of the shortest possible path to a real strategy for stopping Parkinson's disease," said Principal Investigator D. James Surmeier, PhD, of Northwestern University.