WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Monday, October 6, 2014

Improving the safety and efficacy of Botox injections







New insights into botulinum neurotoxins and their interactions with cells are moving scientists ever closer to safer forms of Botox and a better understanding of the dangerous disease known as botulism. By comparing all known structures of botulinum neurotoxins, researchers writing in the Cell Press journal Trends in Biochemical Sciences suggest new ways to improve the safety and efficacy of Botox injections.

"If we know from high-resolution structures how botulinum neurotoxins interact with their receptors, we can design inhibitors or specific antibodies directed at the binding interface to prevent the interaction," said Richard Kammerer of the Paul Scherrer Insititute in Switzerland. "Furthermore, it may be possible to engineer safer toxins for medical and cosmetic applications."

In addition to its popular cosmetic use, the neurotoxin is used for the treatment of muscle conditions related to cerebral palsy, multiple sclerosis, stroke, Parkinson's disease, and more.

The bacterium known as Clostridium botulinum, classically found as a contaminant in home-canned food, produces the neurotoxins, which pass the intestine and enter the bloodstream when ingested, Kammerer explained. When the neurotoxins reach neurons, they bind to receptors at the cell surface. Through a series of events, a portion of the toxin is released inside the cell. Once inside, that light-chain portion acts as a protease to specifically cleave a protein important for the release of acetylcholine, a neurotransmitter important for signaling from nerve to muscle. The result is paralysis, which can be fatal if the muscles required for breathing are affected.

Kammerer and his colleagues offer a comprehensive review of high-resolution structures of botulinum neurotoxins and their complexes with cell-surface receptors, many of which have become available only recently. While many questions remain, the new picture of BoNT/A and its interactions offers considerable hope for less-risky clinical use of Botox in the future.

"The wide range of BoNT/A dosage used in medical or cosmetic applications bears the substantial risk of accidental BoNT/A overdosage," the researchers write. "The BoNT/A-SV2C complex crystal structure provides a strong platform for the rational design of BoNT/A variants with attenuated SV2C binding properties. Such variants are promising candidate proteins for safer applications of the toxin."


No comments:

Post a Comment