WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Tuesday, January 27, 2015

Scientists find drug candidates can block cell-death pathway associated with Parkinson's -SCRIPPS RESEARCH INSTITUTE


IMAGE: PHILIP LOGRASSO, PHD, IS A PROFESSOR
AT THE SCRIPPS RESEARCH INSTITUTE, FLORIDA CAMPUS
JUPITER, FL - January 27, 2015 - In a pair of related studies, scientists from the Florida campus of The Scripps Research Institute (TSRI) have shown their drug candidates can target biological pathways involved in the destruction of brain cells in Parkinson's disease.
The studies, published in the Journal of Medicinal Chemistry and Scientific Reports, suggest that it is possible to design highly effective and highly selective (targeted) drug candidates that can protect the function of mitochondria, which provide the cell with energy, ultimately preventing brain cell death.
These drug candidates act on what are known as the JNK (pronounced "junk") kinases--JNK1, JNK2 and JNK3--each an enzyme with a unique biological function. JNK is linked to many of the hallmark components of Parkinson's disease, such as oxidative stress and programmed cell death. 
"These are the first isoform selective JNK 2/3 inhibitors that can penetrate the brain and the first shown to be active in functional cell-based tests that measure mitochondrial dysfunction," said Philip LoGrasso, a TSRI professor who led both studies. "In terms of their potential use as therapeutics, they've been optimized in every way but one--their oral bioavailability. That's what we're working on now."
The new studies raise the hope that such a therapy could prevent the gradual degeneration of brain cells in Parkinson's disease and halt these patients' decline.
"Some of these compounds had a level of selectivity that ranged as high as 20,000-fold against competing targets and were extremely effective against oxidative stress and mitochondrial dysfunction--both potent cell killers," added HaJeung Park, director of Scripps Florida's X-ray Crystallography Core Facility and the first author of the Scientific Reports study. 
The scientists found that within JNK3, a single amino acid--L144--was primarily responsible for the high level of JNK3 selectivity. Isoform selectivity can help to limit potential side effects of a drug. 
Intriguingly, some recent studies have shown that JNK3 not only plays a central role in brain cell death in Parkinson's disease, but also in Alzheimer's disease. LoGrasso and his colleagues also believe their JNK3 drug candidates have potential for treating ALS (Lou Gehrig's disease). 
###
In addition to LoGrasso and Park, authors of the Scientific Reports study, "Structural Basis and Biological Consequences for JNK2/3 Isoform Selective Aminopyrazoles," include Sarah Iqbal, Pamela Hernandez, Rudy Mora, Ke Zheng and Yangbo Feng of TSRI. See http://www.nature.com/srep/index.html
The first author of the Journal of Medicinal Chemistry study, "Design and Synthesis of Highly Potent and Isoform Selective JNK32 Inhibitors: SAR Studies on Aminopyrazole Derivatives," is Ke Zheng of TSRI. Other authors include Sarah Iqbal, Pamela Hernandez, HaJeung Park and Yangbo Feng of TSRI. See http://pubs.acs.org/doi/abs/10.1021/jm501256y
Both studies were supported by the Department of Defense (W81XWH-12-1-0431 1192) and the National Institutes of Health (GM103825).
Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.
http://health.einnews.com/article/246564749/rww7mLRep0UV-M0J

No comments:

Post a Comment