WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Monday, March 28, 2016

Structure of Parkinson's protein could lead to new diagnostic and treatment options

March 28, 2016

Chemists have identified the complex chemical structure of the protein that stacks together to form fibrils in the brains of Parkinson's disease patients. Armed with this knowledge, researchers can identify specific targets for diagnosis and treatment.
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

CHAMPAIGN, Ill. -- Chemists have identified the complex chemical structure of the protein that stacks together to form fibrils in the brains of Parkinson's disease patients. Armed with this knowledge, researchers can identify specific targets for diagnosis and treatment.
University of Illinois chemists, collaborating with peers at the University of Pennsylvania, Vanderbilt University and Queen Mary University of London, detailed their mapped structure of the protein in the journal Nature Structural and Molecular Biology.
In Parkinson's, the protein alpha-synuclein forms long fibrils that disrupt brain activity. This is similar to the beta-amyloid fibrils that form in Alzheimer's disease patients. However, while the beta-amyloid structure is known, the alpha-synuclein structure has eluded researchers as a result of its complexity, its insolubility and the difficulty of characterizing one protein within a fibril.
"This is the first structure of the full-length fibril protein, which is now well established to be important for the pathology of Parkinson's disease," said study leader Chad Rienstra, a University of Illinois chemistry professor. "Knowing that structure will open up many new areas of investigation for diagnosing and treating Parkinson's disease."
The Illinois group used a special type of molecular imaging called magic-angle spinning nuclear magnetic resonance to measure the placement of atoms in six different samples of alpha-synuclein. In each set of samples, they looked at different sets of atoms, then used advanced computational power to put them all together like pieces of a giant jigsaw puzzle.
"We had to find patterns in the data and systematically test all the possibilities for how the protein would fit together," Rienstra said. "It's like when you solve a really complex puzzle, you know you have it right at the end because all the pieces fit together. That's what we got with this structure."

The group experimentally verified the structure with collaborators by producing the protein in the lab and checking it with various imaging methods to see if it matched the fibrils found in Parkinson's patients. They also verified it biologically by testing it in cell cultures and seeing that it indeed behaved like the protein found in patients.
"These structures are crucial for understanding the mechanisms for how Parkinson's disease works," said Marcus Tuttle, first author of the paper, who worked on the project as a graduate researcher in Rienstra's group and is now a postdoctoral fellow at Yale University. "Amyloid diseases are incredibly complex systems. What structural features drive pathology? That's a super interesting question, but until now there's been no structure. Now there's a whole avenue where we can start to explore the basic mechanism of how the protein works."
Rienstra's group is working with the Michael J. Fox Foundation to identify possible diagnostic agents that could target certain spots on the alpha-synuclein protein and would "light up" in a brain scan, allowing for earlier and more accurate diagnosis.
"We think that the structure that we resolved of alpha-synuclein fibrils will be really significant in the immediate future and has use for diagnosing Parkinson's in patients before they're symptomatic," Rienstra said. "Once people start having symptoms, whether of Alzheimer's or Parkinson's, in many ways it's a little too late to be effective with therapy. But if you catch it early, I think there's a lot of promise for therapies that are being developed. Those are all relying upon the structures that we're solving."
###
The National Institutes of Health supported this work.
Editor's notes: To reach Chad Rienstra, call (217) 244-4655; email rienstra@illinois.edu.
http://www.eurekalert.org/pub_releases/2016-03/uoia-sop032816.php

No comments:

Post a Comment