WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Wednesday, August 30, 2017

Hidden deep in the brain, a map that guides animals' movements

August 30, 2017




New research has revealed that deep in the brain, in a structure called striatum, all possible movements that an animal can do are represented in a map of neural activity. If we think of neural activity as the coordinates of this map, then similar movements have similar coordinates, being represented closer in the map, while actions that are more different have more distant coordinates and are further away.

The study, led by researchers at Columbia University and the Champalimaud Centre for the Unknown, was published today in Neuron.
"From the ears to the toes and everything in between, every move the body makes is determined by a unique pattern of -cell activity, but until now, and using the map analogy, we only had some pieces of information, like single/isolated latitudes and longitudes but not an actual map. This study was like looking at this map for the first time." said Rui Costa, DVM, PhD, a neuroscientist and a principal investigator at Columbia's Mortimer B. Zuckerman Mind Brain Behavior Institute and investigator at the Champalimaud Research at the Champalimaud Centre for the Unknown, in Lisbon. Dr. Costa and his lab performed much of this work while at Champalimaud, before completing the analysis at Columbia.
A snapshot of neural activity 
The brain's striatum is a structure that has been implicated in many brain processes, most notably in learning and selecting which movements to do. For example, a concert pianist harnesses her striatum to learn and play that perfect concerto. Early studies argued that cells in the striatum sent out two simple types of signals through different pathways, either 'go' or 'no go,' and it was this combination of these two signals—acting like a gas pedal and a brake—that drove movement. However, Dr. Costa and his team argued that the reality is far more complex, and that both types of neurons contribute to movement in a very specific way.
"What matters is not how much activity there is in each pathway, but rather the precise patterns of activity," said Dr. Costa. "In other words, which neurons are active at any particular time, and what sorts of movements, or behaviors, corresponded to that activity."
The key to observing neural activity during natural behavior was that the mice had to be able to move freely and naturally. To accomplish this, the team attached miniature, mobile microscopes to the heads of the mice. This allowed them to capture the individual activity patterns of up to 300 neurons in the striatum. At the same time, each mouse was equipped with an accelerometer, like a miniature Fitbit, which recorded the mouse's 
"We have recorded striatal neurons before, but here we have the advantage of imaging 200-300 neurons with single-cell resolution at the same time allowing for the study of population dynamics with great detail within a deep brain structure. Furthermore, here we genetically modified the mice so that neurons were visible when they were active, allowing us to measure specific neuronal populations. This gives us unprecedented access to the dynamics of a large population of neurons in a deep brain structure," says Gabriela Martins, postdoctoral researcher and one of the leading authors.
Towards understanding the striatal dynamics
Then, working with Liam Paninski, PhD, a statistician and a principal investigator at the Zuckerman Institute, the researchers devised a mathematical method of stripping out any background noise to the data. What they were left with was a clear window into the patterns of neural activity, which could serve as a basis for the complete catalog, or repertoire of movements.
"What we saw was that for each type of movement, there is a particular pattern of , and that these patterns were organized in a specific manner" said Dr. Costa.
In the striatum, there is an organization that is not random, where the  that are active together tend to be closer together in space. "This, again, implies that we can learn much more from the neuronal activity and how it relates to behavior when considering detailed ensemble patterns instead of looking at average activity." says Andreas Klaus, a postdoctoral researcher and one of the leading authors. This particular representation somehow maps the complete repertoire of possible actions. Similar actions we do are more similarly represented and actions that are more different are represented more differently. "This mapping reflects similarity in actions beyond aspects of movement speed," added Andreas Klaus.
Interpreting patterns of brain activity and eventually repairing them
But how can scientists read and interpret these patterns of brain activity? "Imagine looking at the brain activity when the mouse makes a slight turn to the right vs. a sharp turn. In even more abstract terms, if moving my right arm is more similar to walking than to jumping, then those would be represented more similarly. One of the challenges is finding out what does this mean. Why is the pattern more similar for similar actions? Is it because it's saying something about the body parts or muscles we're using? This is something we hope to explore for the future," says Dr. Costa.
And he added, "The precise description of the organization of activity in the striatum under normal conditions is the first step toward understand whether, and how, these dynamics are changed in disorders of movement, such as in Parkinson's disease. Experts tend to focus on disruptions to the amount of  as playing a role in Parkinson's, but these results strongly suggest that it is the pattern of activity, and specifically disruptions to that , that may be more critical."
This research marks a critical step toward a long-held scientific goal: deciphering how the brain generates behavior. It also offers clues as to what may happen in disorders characterized by disrupted or repetitive movements—including Parkinson's disease and obsessive-compulsive disorder.
More information: "The spatiotemporal organization of the striatum encodes action space,"  Neuron (2017). DOI: 10.1016/j.neuron.2017.08.015 
Journal reference: Neuron
Provided by: The Zuckerman Institute at Columbia University
https://medicalxpress.com/news/2017-08-hidden-deep-brain-animals-movements.html

No comments:

Post a Comment