I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.
I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.
I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH.IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,
I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.
THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.
PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..
I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.
I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.
THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS
THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!
TRANSLATE
Monday, August 7, 2017
Slimming down, beefing up deep brain implants
August 7, 2017 by Kelly Izlar
Virginia Tech researcher Xiaoting Jia holds up a miniature neural device that would not only record signals from the brain, but also stimulate neural activity. Credit: Virginia Tech
When it comes to sticking something into your brain, smaller is usually better.
Virginia Tech researcher Xiaoting Jia and her team found a new way to reduce the size and increase the conductivity of deep brain implants — potentially unlocking new treatment methods for neurological illnesses like Parkinson's disease. Jia is developing a miniature neural device that would not only record signals from the brain, but also stimulate neural activity.
As described in a study published in the American Chemical Society's ACS Nano, Jia, an assistant professor in the Bradley Department of Electrical and Computer Engineering, is collaborating with researchers from the Virginia Tech School of Neuroscience and the Massachusetts Institute of Technology to incorporate nanomaterial—specifically carbon nanofibers—into deep brain implants.
By using this material, Jia's team was able to increase the electrical conductivity of the neural implants while reducing their size.
Jia likens the reduction to "shrinking a pencil-sized device down to the width of a human hair."
In the study, titled "Polymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for chronic neural interfaces," Jia and her co-authors describe how they crafted tiny recording electrode sensors out of carbon nanofiber composites and integrated them into neural probes, which are about the size of a single neuron.
As the technology has evolved, microelectrode sensors have given researchers a direct channel for recording and affecting brain activity. Deep brain stimulation, for instance, has been used to treat many disabling neurological symptoms—including obsessive-compulsive disorders and Parkinson's disease.
But in their current form, microelectrode sensors that can be implanted in the brain are bulky and rigid, made from metal or silicon. The brain's soft, fragile tissue is easily damaged by these unyielding devices, which can be unsuitable for long-term implant.
Jia and her colleagues are working on the next generation of neural microelectrode sensors—which, to Jia, means robust, flexible, biocompatible, and very small.
To fabricate the tiny neural probes, Jia and her team started with a hand-sized version of the probe—called a macroscopic preform—that contained their new carbon-based electrodes as well as several other features.
After carefully heating the preform, the researchers stretched it from a tall tower (a fiber drawing tower), which pulls the preform into a long, thin strand. They were pleased to find that, during the thermal drawing, the carbon nanofibers lined up lengthwise within the strand.
"This drastically improved the electrical conductivity, but still maintained flexibility and biocompatibility," said Jia.
The probes themselves come from thin, cross-sectional slices of the strand, which contain nano-sized versions of the original features.
Technology developed in this vein could "make new inroads in the field of neuroscience," said Jia. "And, after more study and testing, clinical applications could potentially benefit human patients."
The devices are being tested in Professor Harald Sontheimer's laboratory in the Virginia Tech School of Neuroscience, where the group has been studying the stability and functionality of the implants in the hippocampi of mice brains.
More information: Yuanyuan Guo et al. Polymer Composite with Carbon Nanofibers Aligned during Thermal Drawing as a Microelectrode for Chronic Neural Interfaces, ACS Nano (2017). DOI: 10.1021/acsn
No comments:
Post a Comment