WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Monday, April 23, 2018

Watch your step: How vision leads locomotion

 April 23, 2018, University of Texas at Austin

Researchers jerry-rigged a welding mask around an eye tracker -- to shade the infrared eye cameras from sunlight -- and developed new methods to calibrate the eye tracker with a motion-tracking suit to record gaze and full-body kinematics. Credit: Michelle Chiou

Using new technologies to track how vision guides foot placement, researchers at The University of Texas at Austin come one step closer in determining what is going on in the brain while we walk, paving the way for better treatment for mobility impairments—strokes, aging and Parkinson's—and technology development—prosthetics and robots.

Walking on natural terrain takes precise coordination between vision and body movements to efficiently and stably traverse any given path. But until now, both vision and  have been studied separately within controlled lab environments, limiting understanding of how various neural and biological systems work together to navigate the natural world.
"One of the beautiful things about visually guided walking is that it involves every level of our perceptuomotor hierarchy. To really understand it, you need to know how vision works, how planning works, how muscles work, how spines work, how physics work," said Jonathan Matthis, a postdoctoral researcher in the UT Austin Center for Perceptual Systems.
Matthis' research, published in Cell this April, combined new motion-capture and eye-tracking technologies to track distinct patterns between the two mechanisms. To do so, researchers jerry-rigged a welding mask around an eye tracker—to shade the infrared eye cameras from sunlight—and developed new methods to calibrate the eye tracker with a motion-tracking suit to record gaze and full-body kinematics as participants navigated through three types of terrain: flat, medium and .
"Eye movements are incredibly informative as a window into the cognitive process," Matthis said. "By tracking eyes, we get a clear picture of the kind of information the central nervous system needs to complete any given task."
Researchers found that participants displayed distinct walking and gaze patterns in each of the terrains. Subjects walked quickly with longer strides on the flat terrain, looking down only about half of the time to briefly scan the upcoming path for obstacles.
On the medium and rough terrain, steps became shorter, slower and more variable, with participants looking at the ground more than 90 percent of the time to precisely fixate upcoming footholds. In the medium terrain, walkers focused primarily on where their foot would be in two steps. The rough terrain required walkers to split their gaze between their future foot placement in two and three steps to allow for longer-term path planning.
Despite these differences, an unexpected pattern emerged: In all three terrains, participants consistently looked 1.5 seconds ahead of their current location. This finding is similar to lookahead timing seen in research on other motor actions—stair climbing, driving and reaching—suggesting that this timing plays an important role in human movement.
"The constant lookahead time suggests that walkers are maintaining some sort of global locomotor strategy that is being tuned to each specific environment," Matthis said. "Walkers use gaze to ensure that they always know what will be coming up 1.5 seconds down the path.
"Good action decisions require not only good sensory data, but also a consideration of the costs and benefits of the action," Matthis said. "Taking this type of research out of the lab and into the real world allows us to observe human behavior in its natural environment. This gives us more opportunity to discover things we didn't expect, which will help us advance our scientific knowledge to the benefit of improving clinical treatment of gait-related disorders."
More information: Jonathan Samir Matthis et al. Gaze and the Control of Foot Placement When Walking in Natural Terrain, Current Biology (2018). DOI: 10.1016/j.cub.2018.03.008 
Journal reference: Cell           Current Biology 
https://medicalxpress.com/news/2018-04-vision-locomotion.html

No comments:

Post a Comment