WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Thursday, August 2, 2018

Carnegie Mellon's Aryn Gittis named finalist for Science & PINS Prize

August 2, 2018, Carnegie Mellon University


Synapses on neurons in the external global pallidus. Credit: Carnegie Mellon University


Carnegie Mellon University neuroscientist Aryn Gittis was named a finalist for the Science & PINS Prize for Neuromodulation for her discovery of new therapeutic targets for Parkinson's disease.

The highly competitive prize is awarded for outstanding research from the last three years as described in a 1,500 word essay. Gittis' essay will be published in the Aug. 3 issue of Science.

In her essay, Gittis writes about how, while looking to understand the fundamental biology of the brain's , her lab discovered a class of neurons that could be targeted and stimulated to restore movement in a mouse model for Parkinson's disease.

The human brain is densely packed with neurons connected in elaborate circuits. Electrical stimulation to targeted areas of the basal ganglia has proven to be a promising therapy for movement disorders. The most famous of these is deep brain stimulation for Parkinson's disease. However, the dense, complex circuitry of the brain can make a difference of mere nanometers between relieving a patient's symptoms and inducing unwanted behaviors.

"Teasing apart the  is not unlike the game pick-up sticks, in which a bunch of colored sticks are heaped in a pile on the floor and players must figure out how to remove them one by one, without bringing the whole pile crashing down," Gittis, associate professor of biological sciences and a member of the joint CMU/University of Pittsburgh Center for the Neural Basis of Cognition, wrote.

To attempt to overcome this roadblock, Gittis was studying the genetic road maps in the basal ganglia, which is the area of the  responsible for the motor symptoms of Parkinson's disease. Instead of focusing on the area of the basal ganglia commonly studied, she turned to the overlooked external globus pallidus (GPe). Using optogenetics, Gittis was able to identify that a subset of neurons in the GPe enriched with a molecule called parvalbumin played a critical role in restoring movement in the Parkinson's model. In fact, when these neurons were stimulated over other  in the GPe, the mice not only regained mobility but had their symptoms alleviated for far longer than any other treatment, including .

Gittis' findings suggest that targeting these cells could repair neural circuit dysfunction in diseases like Parkinson's, not just mask the symptoms. She plans to continue studying these targets, and hopes to see if her findings can be incorporated in the clinical setting.


https://medicalxpress.com/news/2018-08-carnegie-mellon-aryn-gittis-finalist.html

No comments:

Post a Comment