WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Thursday, December 20, 2018

Scientists uncover how protein clumps damage cells in Parkinson's

 December 20, 2018, The Scripps Research Institute

Scripps Research scientist Corinne Lasmézas, PhD, and team find that enzyme-modified tau clumps with pα-syn* on the mitochondrial membrane. The two protein aggregates eventually destroy the mitochondria. Credit: Scripps Research


Biologists studying Parkinson's disease have long hoped to solve the mystery of the telltale "clumps." Scientists want to know how clumps of misfolded proteins damage brain cells and contribute to the disease.

Corinne Lasmézas, Ph.D., and her Scripps Research colleagues have now cracked the case of pα-syn*, a protein clump that is particularly toxic to the . Their recent study in the journal Neurobiology of Disease shows that pα-syn* causes damage by recruiting certain enzymes and an accomplice to damage cells. The accomplice is a protein called tau.
"We really felt like detectives in this study," says Lasmézas, a professor on the Florida campus of Scripps Research. "We hope that this research into the root cause of Parkinson's will bring us closer to finding a disease-modifying treatment."
Parkinson's disease is the most common neurodegenerative disease after Alzheimer's. The disease strikes when the brain starts losing the cells that produce dopamine, a critical neurotransmitter.
Parkinson's can have many causes, from genetics to environmental factors, but a protein called α-synuclein (α-syn in short) is found to turn bad and form clumps in every case. The Lasmézas lab has discovered that a particular type of α-syn clumps, or "aggregates," that they called pα-syn*, starts to show up around cellular structures called mitochondria. This is a big problem for cells, which need mitochondria to produce their energy.
"We can see the mitochondria break into fragments in these cells," says Lasmézas. "We wanted to understand the mechanism behind this."
The investigation relied on a combination of cultured neurons and a mouse model of Parkinson's, as well as analysis of donated brain tissues from deceased Parkinson's disease patients.
The new research shows that pα-syn* hurts mitochondria by starting a cascade of events. First, pα-syn* activates a pathway in cells called the MAPK pathway. Enzymes of the MAPK pathway then modify the protein tau. This was a fascinating finding, since tau has long puzzled neuroscientists. Tau is known to form tangles inside neurons in the brains of Parkinson's disease patients. But scientists did not know how they got there or what they were doing.
Lasmézas and her team found that enzymes of the MAPK pathway modify tau through a process called phosphorylation. This version of tau then clumps together with pα-syn* on the mitochondrial membrane. The two protein aggregates grow bigger and bigger, destroying the mitochondria in the process.
At last, the researchers knew what pα-syn* was doing and how it hurt cells. "We've shown how pα-syn* works as the main trigger in mitotoxicity," says Lasmézas.
Study first author Diego Grassi, Ph.D., a research associate at Scripps Research at the time of the study, stresses the importance of discovering tau's role in destroying mitochondria. Scientists know tau is involved in Alzheimer's disease, so this study suggests a mechanism behind how Alzheimer's and Parkinson's overlap at the molecular level. The presence of α-syn and tau aggregates is also a telltale sign of other forms of dementia, and now scientists know how this might occur.
"This is also important for its possible implications in other neurodegenerative disorders," says Grassi.
Lasmézas and Grassi say the next step in this research is to study how to stop pα-syn*, with the ultimate goal of treating Parkinson's .
"I know we are doing something that could make a meaningful difference in the quality of life of people affected by this condition," says Grassi. "I can hardly imagine a place better than Scripps Research to perform this kind of translational activity."
More information: Diego Grassi et al. Pα-syn* mitotoxicity is linked to MAPK activation and involves tau phosphorylation and aggregation at the mitochondria, Neurobiology of Disease (2018). DOI: 10.1016/j.nbd.2018.11.015 
Journal reference: Neurobiology of Disease 
https://medicalxpress.com/news/2018-12-scientists-uncover-protein-clumps-cells.html

No comments:

Post a Comment