WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Monday, July 8, 2019

Infection-fighting protein also senses protein misfolding in non-infected cells

UNIVERSITY OF TORONTO    JULY 8, 2019


IMAGE: Pictured here: Mena Abdel-Nour, Stephen Girardin and Dana Philpott. 


Researchers at the University of Toronto have uncovered an immune mechanism by which host cells combat bacterial infection, and at the same time found that a protein crucial to that process can sense and respond to misfolded proteins in all mammalian cells.

The protein is called heme-regulated inhibitor or HRI, and the researchers showed that during bacterial infection it triggers and coordinates a chain reaction among other proteins that form a larger complex. That larger group or 'signalosome' amplifies inflammation and leads to an anti-bacterial response.
But HRI can also regulate protein folding in other cell types, the researchers showed. Protein folding, which helps determine the 3-D shape of a protein and is essential for its function, is implicated in non-infectious diseases including the neurodegenerative disorders Parkinson's, Alzheimer's and ALS.

"The innate immune function that we discovered is essentially a mechanism of protein scaffolding, which is important because you want a quick and orderly response to bacterial infection," says Stephen Girardin, a professor of laboratory medicine and pathobiology and of immunology at U of T. "But we also found that same pathway is important for protein scaffolding and aggregation in other cells, which opens promising research angles for neurodegenerative and other diseases."

The journal Science published the findings today.
Researchers have studied HRI for over three decades, but mostly in the context of red blood cell disorders. "This protein appears in all cells in the mammalian body and was recognized as a broad or promiscuous sensor," says Mena Abdel-Nour, lead author on the paper who completed his doctorate in Girardin's lab earlier this year. "But it was overlooked relative to pattern recognition molecules and the formation of amyloid-like structures. We had to test its role in several different pathways before we believed what we saw."

Abdel-Nour and his colleagues developed a novel technique to study the effects of HRI. They adapted a biochemistry assay from the lab of Jeffrey Lee -- a professor of laboratory medicine and pathobiology at U of T whose team works beside their own -- which helped them distinguish between folded and misfolded proteins when looking at protein aggregates. Scientists have struggled to make that distinction in part because most available tests only work in test tubes and are not adaptable to cells.

The researchers have early pre-clinical data that shows HRI could protect against the type of neurodegeneration seen in Parkinson's. "Speculatively, it might be possible to find molecules that produce HRI's protective effects, which could lead to a bona fide therapy," says Abdel-Nour, who plans to pursue a career as a biotechnology and health-care consultant. Current therapies for Parkinson's focus on finding and clearing out protein aggregates, rather than fixing cellular defects before those clusters accumulate.

Girardin says he is committed to pursuing that research in collaboration with neuroscientists, and he just received funding to support that work. "We are focused on Parkinson's because it's a very important disease for human health, and because its hallmark is protein aggregation inside cells, so it may be a perfect model to test this new pathway."

Next steps include biochemical investigations of HRI and related complexes during protein misfolding, and animal studies of neurodegenerative disease to further validate the new pathway, which shares many features with a similar pathway in humans.
###
Several researchers collaborated on the study including Dana Philpott, a professor of immunology at U of T, and Damien Arnoult, a professor at INSERM, France's national institute of health and medical research.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

https://www.eurekalert.org/pub_releases/2019-07/uot-ipa070419.php

No comments:

Post a Comment