How many people with Parkinson’s disease have insulin resistance?
of 154 non-diabetic Parkinson’s patients conducted at Cedars-Sinai Hospital in Los Angeles found that 58 percent of them had insulin resistance. All of these people had normal fasting glucose levels and—in many cases—normal hemoglobin A1C levels and normal body weight as well. In fact, a surprising 42 percent of normal-weight people with Parkinson’s had insulin resistance [determined by a HOMA index of 2.0 or above and/or a hemoglobin A1C of 5.7 or above]. These data underscore the fact that routine diabetes testing and body weight measurements often fail to detect insulin resistance, fooling people into thinking they are metabolically healthy and don’t need to make lifestyle changes.
have shown that people with Parkinson’s disease who also have insulin resistance are more likely to have severe symptoms, faster disease progression, and Parkinson’s-related
dementia.
So, while insulin resistance is certainly not the only player in the development of Parkinson’s disease, it is clearly a force to be reckoned with in the majority of cases.
Location, Location, Location
If insulin resistance is a general metabolic problem that affects the glucose and insulin levels of the whole brain, why is it that Parkinson’s disease appears to originate in the substantia nigra?
The substantia nigra demands much more energy than most other regions of the brain. This is because it is densely packed with highly-interconnected, dopamine-producing neurons, many of which are poorly insulated or completely uninsulated. Myelin, the white matter that wraps around nerve cells and makes electrical conduction more energy-efficient, is largely absent in this area of the brain, meaning that these cells use more energy when sending their electrical messages. These cells also possess pacemaker properties which contribute to their hunger for energy. Together, these features render dopamine-producing neurons exquisitely vulnerable to the brain energy deficits caused by insulin resistance.
raises the fascinating possibility that the earliest and most fundamental problem underlying both Alzheimer’s and Parkinson’s may be the loss of dopamine-producing neurons throughout the brain. Only three areas of the brain synthesize dopamine: the substantia nigra (movement coordination), the locus coeruleus (attention/arousal/
stressresponse), and the ventral tegmental area or VTA (emotion,
cognition,
motivation, pleasure). This dopamine deficit hypothesis may help to explain why it is so common for Alzheimer’s and Parkinson’s patients alike to experience
psychiatric symptoms such as attention, mood and motivation problems, even rather early in the course of the disease.
It would seem that anything we could do to preserve the exposed, energy-hungry neurons of our dopamine circuitry would be a very good idea indeed.
Ketogenic Diets for Parkinson’s Disease
If Parkinson’s disease in many cases is partly due to an energy crisis in which the low-insulin brain struggles to process glucose, then providing the brain with an alternative fuel source should be helpful.
Fortunately, ketones serve as an excellent fuel source for most brain cells, and they burn beautifully in a low-insulin environment. The body naturally generates ketones from fat whenever blood insulin levels are low enough to switch the body into fat-burning mode. Ketogenic diets—very low carbohydrate diets—lower blood glucose and insulin levels to the point that ketones are produced that can be measured in the bloodstream.
Thus far there have only been two human clinical studies of ketogenic diets in Parkinson’s disease, but the results look promising.
The first was a small 2005 pilot study of five overweight patients instructed to eat a diet composed of 90 percent fat, 8 percent protein and 2 percent carbohydrates. All patients achieved ketosis, with blood ketone levels ranging from 1.13 mM to 8.0 mM. All patients lost weight and experienced a reduction in symptoms as measured by the Unified Parkinson’s Disease Rating Scale. The main criticism of this study was that four of the five patients were taking L-dopa, which enters the brain more easily under low-protein conditions. Thus, it is possible that the clinical improvements seen may have been due to improved medication delivery to the brain rather than to ketosis, as this particular research diet was designed to be relatively low in protein.
The second study was a 2018 randomized trial of 38 people with Parkinson’s disease that compared a low-fat diet to a ketogenic diet for eight weeks. Both diets were designed to contain adequate (rather than low) protein (75 g/day) and the same number of calories (1750/day). The low-fat diet contained 42 grams of fat and 246 grams of carbohydrate per day. The ketogenic diet contained 152 grams of fat and 16 grams of carbohydrate per day. People in the ketogenic group achieved blood ketone levels of 1.15 ± 0.59 mM.
Both groups showed small but significant improvements in motor and nonmotor symptoms; however, the ketogenic group showed much greater improvements (41 percent) in nonmotor symptoms. This is important, because nonmotor symptoms, such as urinary problems, pain, fatigue, daytime sleepiness, and cognitive impairment, are among those least likely to respond to L-dopa.
Wake Up and Smell the Insulin
Just as Alzheimer’s disease does not happen overnight, Parkinson’s disease begins long before symptoms appear. By the time a person notices the symptoms of Parkinson’s, at least 50 percent of the dopamine-producing neurons in the substantia nigra have already been destroyed.
Fortunately, you don’t have to stand idly by while your brain quietly deteriorates from the inside-out. Insulin resistance is a major risk factor for this devastating condition that you can do something about right away.
Many of my patients think that the best way to boost brain energy is by eating more carbohydrates. While this sounds logical, the paradoxical truth is that the more sugar you eat, the more insulin-resistant your brain can become, making it increasingly difficult for your brain cells to turn sugar into energy.
If you discover that you have insulin resistance, you can take steps right now to lower your insulin levels and reduce your risk for neurodegenerative conditions. Learn more about how to figure out whether you have insulin resistance, improve your metabolism, and protect your insulin-signaling system using simple lifestyle strategies in my post “How to Diagnose, Prevent and Treat Insulin Resistance” which includes a (free) downloadable PDF of simple insulin resistance tests you can bring to your next medical visit and an infographic of ways to eat healthier that you can use right away to improve your metabolism.
It is common for awareness campaigns to solicit donations for research, most of which is focused on medications, all of which have failed. Raising awareness of the important connection between metabolic health and neurodegenerative diseases could inspire much-needed nutrition and lifestyle-oriented research and, in the meantime, empower individuals to invest in lifestyle changes that could change the course of their future.
https://www.psychologytoday.com/us/blog/diagnosis-diet/201906/parkinsons-alzheimers-and-the-new-science-hope
No comments:
Post a Comment