WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Thursday, August 8, 2019

Parkinson's study in mice highlights importance of motor learning in combination with dopamine replacement

 Aug. 8, 2019



Dopamine-producing neurons are essential for motor skill learning in a mouse model of Parkinson’s disease, according to a new study from the NIA Intramural Research Program (IRP). Findings were published July 30 in Cell Reports by a team of researchers from the Laboratory of Neurogenetics in the NIA IRP.
Parkinson’s disease (PD) causes shaking and stiffness, and leads to difficulty with walking, balance, and coordination. Some of the nerve cells most affected by PD are those responsible for producing and transmitting the neurotransmitter dopamine, vital for controlling complex body movements. Dopamine-replacement therapy is a common treatment for PD-related movement issues like tremor and slowness of movement but is less effective in treating postural instability and gait disability, which are related to motor learning decline.
In the study, the NIA IRP researchers focused on a small group of neurons and their role in motor skill acquisition in late-stage Parkinson’s. In a PD mouse model, scientists targeted dehydrogenase 1A1-positive (ALDH1A1+) nigrostriatal dopaminergic neurons (nDANs)—the dopamine-producing brain cells that experience the most loss in PD, causing severe impairments in motor skill learning and modest reduction in high-speed walking. The researchers next produced a detailed map of ALDH1A1+ nDANs neuronal networks in the rodent brain.
They then selectively removed these neurons in mice to mimic the pattern of brain cell loss in late-stage PD. The team used a rotarod test—in which the mice must learn to balance and walk on a rod that constantly rotates like a treadmill—to evaluate motor skill learning. The ALDH1A1+ nDANs knockout mice lost the ability to learn new motor skills.
Dopamine-replacement therapy did not help the mice regain their ability to learn new motor skills. The researchers concluded that because motor learning requires a dynamic response to stimuli and a timely release of dopamine inputs, dopamine-replacement therapy alone was not sufficient to restore motor learning.
The findings suggest that motor skill learning requires dynamic neural network activity orchestrated by ALDH1A1+ nDANs. They point toward the potential need for specialized physical and occupational therapy, in addition to dopamine-replacement, to help rebuild motor learning neural circuits in people with PD. Future studies will be necessary to better understand how these specific neurons regulate motor skill learning at both the cellular and circuit levels.
Reference: Wu, et al. Distinct connectivity and functionality of aldehyde dehydrogenase 1A1-positive nigrostriatal dopaminergic neurons in motor learningCell Reports. 2019;28(5):1167-1181.e7. doi: 10.1016/j.celrep.2019.06.095.
https://www.blogger.com/blogger.g?blogID=4282591254614897626#editor/target=post;postID=7144638492348884407;onPublishedMenu=allposts;onClosedMenu=allposts;postNum=0;src=postname

No comments:

Post a Comment