WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Tuesday, November 5, 2019

Mouse-brain Computer Model Tracks Spread of Alpha-synuclein in Parkinson’s

NOVEMBER 5, 2019 BY CATARINA SILVA, MSC 



Researchers have developed a computer model of the mouse brain that integrates both Parkinson’s disease-related genetic risk factors and the animals’ brain networks to help them understand how abnormal alpha-synuclein protein spreads and how neurodegeneration progresses.
In recent years, mutations in the gene coding for the leucine-rich repeat kinase 2 (LRRK2) have been identified as the most common cause of genetic Parkinson’s, accounting for 1%–2% of all cases and up to 40% in some ethnic groups.
Mutations in this gene usually result in the malfunctioning of lysosomes (special compartments within cells that digest and recycle different types of molecules).
Lysosomal dysfunction is involved in the formation of Lewy body protein aggregates and, therefore, neurodegeneration. One of the most common mutations found in the LRRK2gene is called G2019S and occurs when a glycine is substituted by a serine at amino acid 2019. (Amino acids are the proteins’ building blocks.)
Evidence indicates that in neurodegenerative diseases misfolded proteins, such as alpha-synuclein, spread through the brain along anatomically connected networks, inducing progressive decline. In the laboratory, scientists have been able to reproduce the cell-to-cell transmission of disease-related molecules and consequent neuronal death.
However, it is still unclear which factors make cells vulnerable to disease and regulate the spread of misfolded.
To better understand the spatiotemporal pattern of misfolded protein spreading, researchers at the University of Pennsylvania have combined quantitative mapping of disease with network modeling of the mouse brain.
Researchers injected a toxic form of the alpha-synuclein protein into the dorsal striatum, a brain area involved in motor control, of 3-month-old mice and evaluated the protein buildup at 1, 3, and 6 months post-injection.
Alpha-synuclein was found to distinctly accumulate in different brain regions, including the substantia nigra, which is severely affected in Parkinson’s disease, the hippocampus(involved in learning and memory), dorsal striatum (involved in voluntary movement), motor cortex and somatosensory cortex (processes sensations). Higher concentrations were discovered in the brain regions connected to the injection site.
Three months after injection, alpha-synuclein had produced Lewy body-like cellular inclusions.
To understand how this protein spread in a context of disease, scientists developed a computer-based model using a map of the mouse brain and its inner neuronal pathways.
When the team compared the protein accumulations from the mouse brains to the computational model, alpha-synuclein was found to spread primarily along specific brain pathways. Nonetheless, some areas with alpha-synuclein buildup were not associated with those pathways, but instead to higher levels of SNCA, the gene that provides instructions for alpha-synuclein.
That discovery led the team to incorporate genetic variables into the  computer model.
Although the LRRK2 G2019S mutation is a known risk factor for developing Parkinson’s, mutated animals showed similar alpha-synuclein spreading patterns as non-mutated mice. Still, there were large regional differences in the degree and rate of alpha-synuclein pathology accumulation, namely within the hippocampus, substantia nigra and primary somatosensory cortex.
Importantly, mutated mice had no accumulation of alpha-synuclein if they were not injected with abnormal alpha-synuclein first, suggesting LRRK2 G2019S may not initiate disease by itself, but rather alter neuronal vulnerability to the disorder.
This hypothesis was confirmed when scientists observed a greater buildup of alpha-synuclein in specific brains regions of LRRK2 G2019S mutated mice, while those same areas were less vulnerable to abnormal cellular changes in non-mutated animals.
In conclusion, a brain network computer-based model that visualizes alpha-synuclein spreading and takes into account both brain connectivity and genetic background may become a reliable way to test different protein spreading scenarios. In the long-run, that should help investigators to better understand the processes behind neurodegenerative diseases such as Parkinson’s.
https://parkinsonsnewstoday.com/2019/11/05/mouse-brain-computer-model-tracks-spread-of-alpha-synuclein-in-parkinsons/

No comments:

Post a Comment