WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Thursday, November 14, 2019

Way of Monitoring Stem Cells Maturing in Nerve and Other Cells May Aid Parkinson’s Understanding, Treatment

NOVEMBER 14, 2019     BY MARISA WEXLER 


A new biosensor system may make it easier to monitor stem cells changing into mature cells like neurons, which could allow for a better understanding of diseases like Parkinson’s and support the development of new treatments.
Stem cells are able to continuously divide and to differentiate into other types of cells. Because of these properties, stem cells have gained interest in a number of fields, including regenerative medicine for neurological conditions like Parkinson’s and Alzheimer’s. The basic idea is that they could be used to ‘replace’ brain cells (neurons, a type of nerve cell essential for cell-to-cell communication) that become damaged in the course of the disease.
However, applications like this would require exquisitely precise monitoring of these cells.
“A critical challenge is ensuring high sensitivity and accuracy in detecting biomarkers — indicators such as modified genes or proteins — within the complex stem cell microenvironment,” KiBum Lee, MS, PhD, a study co-author and professor at Rutgers University, said in a press release. “Our technology, which took four years to develop, has demonstrated great potential for analyzing a variety of interactions in stem cells.”
The new technology relies on a technique called Raman spectroscopy. In simple terms, this technique involves analyzing the way light scatters off of molecules, which — with the help of computational analyses — allows scientists to figure out details about the molecules being studied.
The signals generated by Raman spectroscopy are, by their very nature, tiny. In essence, the new system uses a combination of gold nanostructures and very thin layers of graphene to amplify these signals, a technique called surface-enhanced Raman scattering (SERS).
By analyzing what molecules a cell is making, particularly in terms of RNA, researchers can gain insight into what genes in a cell are ‘on’ or ‘off’ (gene expression), which is critical for understanding the development of stem cells.
Of note, gene expression is the process by which information in a gene is synthesized to create a working product, like a protein.
As a proof-of-concept, the researchers analyzed neural stem cells, a specific subset of stem cells that, as their name suggests, can differentiate into neurons. They confirmed that their system showed that the pre-differentiation stem cells had high expression of the stem cell marker Nestin, whereas cells that differentiated into neurons had high expression of a neuron marker called TuJ1 (class III β-tubulin).
“Utilizing our developed system we can confirm approximately 2 orders of magnitude increase in Tuj1 RNA level [in differentiated cells],” the researchers wrote. Importantly, this finding was consistent with the results of analysis with polymerase chain reaction (PCR), which is a well-established technique for measuring RNA levels and, by extension, gene expression.
“Collectively,” the researchers concluded, “we believe that our graphene−Au [gold] hybrid SERS nanoarray system will not only be used for high-quality and high throughput bio/chemical molecule screening assays but will also help us to understand cellular phenomena such as disease progression and stem cell differentiation, thus leading to more effective therapies.
”https://parkinsonsnewstoday.com/2019/11/14/monitoring-stem-cells-maturing-into-neurons-aid-parkinsons-understanding-treatment-study/

No comments:

Post a Comment