WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Thursday, February 11, 2016

Machine-learning robot could streamline drug development

CHRIS WOOD  FEBRUARY 10, 2016
The technology could revolutionize the testing of new medications (Credit: Shutterstock)
Testing out newly developed drugs is an extremely time-consuming process, and it can be difficult to get right. Now, a team of scientists at Carnegie Mellon University (CMU) is working to streamline the task, creating a robotically-driven experimentation system that's able to reduce the number of tests that have to be carried out by as much as 70 percent.
When working on a new drug, scientists have to determine its effects to ensure that it's both an effective treatment and not harmful to patients. This is hugely time-consuming, and it's simply not practical to perform experiments for every possible set of biological conditions.
That's where CMU's new robotic system steps in. It uses a machine learning approach to choose which experiments to conduct, using patterns in the data to accurately predict results of experiments without actually carrying them out.
The system is able to conduct selected experiments on its own, using liquid-handling robots and an automated microscope. Its abilities were put to the test in a study to determine the effects of 96 drugs on 96 cultured mammalian cell clones, containing different, fluorescently-tagged proteins. A total of 9,216 experiments were possible, each of which involved testing the effects of a drug by taking a picture of it mixing with the target cell.
The machine began by imaging all 96 cells, pinpointing the location of the protein within it. The effects of each drug were then recorded in the same way, with the machine learning algorithm slowly identifying patterns in the location of the proteins, known as phenotypes.
By grouping together similar images, the machine learner was able to identify potential new phenotypes without help from the researchers. As more data was gathered, it was used to form a predictive model, guessing the outcomes of unmeasured experiments.
A total of 30 rounds of testing were undertaken by the automated system, with 2,697 experiments completed out of the possible 9,216. The rest of the outcomes were predicted by the machine, to an impressive accuracy rate of 92 percent.
The researchers believe that their work proves that machine learning techniques are viable for use in medical testing, and could have a big impact on both the practical and financial issues faced by the field.
"The immediate challenge will be to use these methods to reduce the cost of achieving the goals of major, multi-site projects, such as The Cancer Genome Atlas, which aims to accelerate understanding of molecular basis of cancer with genome analysis technologies," said senior paper author Robert F. Murphy.
The findings of the research were published online in the journal eLife.
http://www.gizmag.com/machine-learning-drug-development/41759/?utm_source=Gizmag+Subscribers&utm_campaign=d5986a6098-UA-2235360-4&utm_medium=email&utm_term=0_65b67362bd-d5986a6098-92059757

No comments:

Post a Comment