WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Friday, January 26, 2018

Parkinson’s Disease Digital Biomarker DREAM Challenge Winners Announced

JANUARY 26, 2018   BY CAROLINA HENRIQUES IN NEWS.








The winners of a crowd-sourced research challenge designed to improve the ability of remote sensors to monitor Parkinson’s disease (PD) used a mix of signal processing and deep neural networks to better predict disease and disease severity.
Sage Bionetworks, in collaboration with the Michael J. Fox Foundation, recently published the results of the Parkinson’s Disease Digital Biomarker (PDDM) DREAM Challenge. The methods developed by top-performing teams performed 38 percent better than previous models at detecting Parkinson’s from a walk and balance test, and were 58 percent better than baseline models at predicting severity of different symptoms, among other achievements.
“The proposed solutions were far outside the traditional techniques used in the field of actigraphy (a sensor used to measure gross motor activity) and many of the experts involved in organizing the challenge are reconsidering the way they interpret this kind of data,” Larsson Omberg, vice president of systems biology at Sage Bionetworks, said in a press release.
The PDDM DREAM Challenge was divided into two categories. Participants in the first category used data from mPower (a large health study where Parkinson’s patients used their mobile phones to perform walk and balance tests) to extract features that could be used to detect the disease. In the second category, participants extracted features for three different symptoms (tremor, dyskinesia and bradykinesia) from a Michael J. Fox Foundation-funded study, the Levodopa Response Trial (where people were monitored with three to eight accelerometer sensors while performing a series of activities).
Yuanfang Guan and Marlena Duda from the University of Michigan, Ann Arbor, won the first category. The team developed a deep learning convolutional neural network with artificial intelligence technology that led to a predictive model identifying Parkinson’s 38 percent better than baseline models.
The three award winners in the second category were Bálint Ármin Pataki, from Eötvös Loránd University in Hungary; Jennifer Schaff, a Data Scientist at Elder Research, Inc.; and Yuanjia Wang and Ming Sun, from Columbia University. Pataki built features for tremor severity that performed 11 percent better than previous models. Schaff developed statistical methods to derive features that predicted dyskinesia severity 59 percent better than baseline models. Wang and Sun built features using spectral decomposition that outperformed all other teams in predicting bradykinesia with a 17 percent improvement.
The next step is moving participants into a joint effort to learn from each other’s experiences and work together to find new methods that might improve the value of the new findings and help interpret the clinical relevance of new features found during the challenge.
More than 440 data experts participated in the challenge from all corners of the world. The DREAM Challenge is funded by the Michael J. Fox Foundation and the Robert Wood Johnson Foundation.
https://parkinsonsnewstoday.com/2018/01/26/parkinsons-disease-digital-biomarker-dream-challenge-winners-announced/

No comments:

Post a Comment