I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.
I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.
I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH.IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,
I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.
THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.
PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..
I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.
I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.
THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS
THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!
TRANSLATE
Wednesday, January 24, 2018
Prediction of psychotic onset with AI language analysis
January 24, 2018, IBM
The figure plots the average and standard deviation of the values of the two main factors that provide for conversion (i.e. transition from at-risk to onset) prediction. There are four groups: controls (CTR), patients at-risk (clinical high risk) who do not transition to psychosis (CHR-), patients who do eventually transition (CHR+), and patients who have already transitioned to psychosis (FEP, i.e. first episode). The horizontal axis is related to the maximal value of semantic discourse coherence; observe that the control population have higher values. The vertical axis corresponds to the variance of the coherence; in this case the patients who eventually transition to psychosis (CHR+) show a higher value, meaning that they oscillate between being highly incoherent to being highly coherent. Those who have already converted (FEP), on the other hand, have low maximal coherence, and low variance; i.e. the stay always incoherent. Credit: IBM
Psychiatrists characterize schizophrenia, a mental condition with devastating effects on those who suffer it, by a set of intuitively understandable concepts including "poverty of speech" and "flight of ideas." These concepts, however, are subjective in the sense that their quantification depends significantly on the particular training and ultimate judgment of individual psychiatrists. The evaluation of a patient is not only subject to this uncertainty, but also to the availability of these highly trained professionals, and to the clinical facilities where evaluation is usually performed.
The IBM Research team for Computational Psychiatry and Neuroimaging has been developing methods intended to mitigate these limitations using Artificial Intelligence (AI) to provide a consistent (i.e. evaluator-independent) neuropsychiatric evaluation from speech samples, which could be delivered remotely. In collaboration with academic researchers, we published results in 2015 showing that it is possible to use AI to model differences in speech patterns between high-risk patients who subsequently developed psychosis and those who did not. Those results were obtained by analyzing baseline interviews in which patients talk about themselves for close to one hour, using the AI method Natural Language Processing (NLP) to quantify the notion of "poverty of speech" as syntactic complexity, and "flight of ideas" as semantic coherence. While successful, this approach had several limitations: only one cohort, from a single location, and using a single evaluation protocol.
In a recent paper, Prediction of psychosis across protocols and risk cohorts using automated language analysis, published in the top-ranked psychiatry journal, World Psychiatry, we took steps toward overcoming these limitations. Studying a different and larger patient cohort, from a different location and a very different evaluation protocol (patients being asked about how they understood a story they read), we built a retrospective model of patient speech patterns that would have predicted with 83 percent accuracy whether a patient subsequently developed psychosis. Significantly, this model also would have predicted with 79 percent accuracy whether patients in the earlier cohort would have developed psychosis. That is, the automated, AI-enabled analysis of the speech patterns of these at-risk patients may have the potential to be highly predictive of the future onset of psychosis in a way that bridges differences in recruitment criteria between institutions, and the specifics of the probing protocol.
We believe this is a significant step towards the goal of developing a tool for mental health practitioners, caregivers and patients themselves with a tool that can expand and multiply the reach of neuropsychiatric assessment outside of the clinic. Stay tuned to hear more about the work we are doing in several other mental health conditions such as depression, Parkinson's and Alzheimer's diseases and chronic pain, among others.
More information: Cheryl M. Corcoran et al. Prediction of psychosis across protocols and risk cohorts using automated language analysis, World Psychiatry (2018). DOI: 10.1002/wps.20491
No comments:
Post a Comment