WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Thursday, January 11, 2018

Researchers identify new melatonin-based molecular targets that will allow to design new drugs against Parkinson's

January 11, 2018, University of Granada

Scheme summarizing the main findings reported in this study.
The glial metabolite of MPTP, MPP+, enters into dopaminergic neurons in the SN and accumulates in the mitochondria. where it specifically binds to and inhibits complex I of the ETC. This leads to mitochondrial respiration failure, reducing ETC-OXPHOS coupling as well as the efficiency of the oxidative phosphorylation. MPP+ also promotes an increase in the production of NO by activation of the inducible isoform iNOS, whereas nNOS activity remains unchanged. Depletion of either iNOS or nNOS did not prevent the decrease in oxygen consumption, suggesting that MPTP-induced respiratory defects and consequent ROS production run independently of iNOS activation. The interplay of these two MPTP-dependent consequences, respiration failure and NOproduction, could generate a positive feedback loop where inflammation and oxidative damage are prevalent and cause neurodegeneration. This misbalance generates an excess of ROS by electron leak that, in combination with RNS, is known to induce the expression of inflammatory cytokines and membrane oxidative damage. Melatonin that also accumulates in the mitochondria, harnesses the activity of the respiratory complexes including the inhibition of complex I induced by MPTP as a first action. Melatonin administration restored the coupling between the ETC and OXPHOS, rescued mitochondrial respiration and reduced ROS production, by reducing electron leak and directly scavenging free radicals. On the other hand, the indoleamine also inhibits iNOS activation, reducing NO production and consequently reducing inflammation that closes the cycle.




A team of scientists led by Darío Acuña-Castroviejo, professor at the University of Granada (UGR), has published the results of a new breakthrough in molecular mechanisms of the anti-Parkinsonian activity of melatonin.

This study, published in the renowned Plos One journal, has been focused on the role of nitric oxide synthases, enzymes responsible for the production of nitric oxide (NO●), a neurotransmitter and neuromodulator that, when produced in excess, participates in the process of mitochondrial  and neurodegeneration. Especially, the inducible and neuronal forms of said enzymes (iNOS and nNOS, respectively) have been studied, since they have been considered therapeutic targets for Parkinson's disease (PD).
This UGR research team has already carried out studies on PD models in cell cultures, zebrafish and mice. "With this research we clarify one of the most controversial aspects of the pathophysiology of PD and identify highly specific molecular targets for the design of new drugs to treat this disease," says the UGR professor.
The pathophysiology of PD presents three fundamental aspects: neuroinflammation, loss of dopamine, and . These processes lead to the death of dopaminergic neurons and the appearance of parkinsonian symptoms.
"The mitochondria plays an essential role in the cell. Until now, it was thought that the inflammatory process that occurs in PD due to the increase of iNOS and the excessive production of NO resulted in a massive entry of NO to the mitochondria. Once there, NO would induce oxidative/nitrosative damage, bioenergetic deficiency and decrease in ATP production. All this would lead to ", explains Professor Acuña.
In this study, three strains of mice were used: control group, nNOS-deficient group, and iNOS-deficient group. Thus, scientists have been able to prove that, contrary to what was thought, the mitochondrial failure that determines dopaminergic neuronal death during the development of PD is independent of those two enzymes.
Therefore, neuroinflammation and mitochondrial damage are two independent processes that occur during Parkinson's disease. "Using high resolution respirometry techniques we could also prove that the inhibition of the mitochondrial complex I activity is the primary event responsible for bioenergetic failure and the deficiency of ATP (the fuel of most cellular processes)". Therefore, "the sequence of events leading to dopaminergic neuronal death in PD begins with mitochondrial damage, continues with a process of , it is followed by an inflammatory response or neuroinflammation, and culminates in neuronal death and loss of dopamine. In turn, neuronal death favors mitochondrial damage, thus entering a chronic vicious circle of  that accelerates neurodegeneration", explains Acuña.
As a matter of fact, melatonin is capable of preventing all those neurodegenerative processes because its main function is to act within the mitochondria, where it restores complex I activity and the production of ATP. This neutralizes the oxidative stress and neuroinflammation that result from mitochondrial dysfunction, thus preventing neuronal .
Melatonin has proven, once again, its neuroprotective capacity and its clinical utility due to the specificity of its actions for maintaining the integrity of .
More information: Ana López et al. Mitochondrial impairment and melatonin protection in parkinsonian mice do not depend of inducible or neuronal nitric oxide synthases, PLOS ONE (2017). DOI: 10.1371/journal.pone.0183090 
Journal reference: PLoS ONE
Provided by: University of Granada
https://medicalxpress.com/news/2018-01-melatonin-based-molecular-drugs-parkinson.html

No comments:

Post a Comment