WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Monday, April 30, 2018

Keep calm and carry on: Scientists make first serotonin measurements in humans

 April 30, 2018, Virginia Tech

Read Montague, a professor at the Virginia Tech Carilion Research Institute (left), in a videoconference call with collaborators Rosalyn Moran, currently at King's College London, and Terry Lohrenz of VTCRI, discusses research that revealed changing serotonin levels in the brains of human volunteers. Their study provides new understanding of serotonin's role in regulating human choice. Not pictured: Co-first author Ken Kishida of Wake Forest School of Medicine. Credit: Virginia Tech Carilion Research Institute


Scientists at the Virginia Tech Carilion Research Institute have begun to unravel how serotonin acts, based on data collected in a first-of-its-kind experiment that utilized electrochemical probes implanted into the brain of awake human beings.

The  is associated with mood and helps shape the decisions we make.
The readings were collected during brain surgery as patients played an investment game before receiving deep brain stimulation as a treatment to attempt to alleviate symptoms of Parkinson's disease.
The study, conducted in collaboration with Wake Forest School of Medicine, was published online in January 2018 and appears in the May issue of Neuropsychopharmacology, a publication in the Nature family of journals.
The research provides the first ever recordings of simultaneous sub-second fluctuations in dopamine and serotonin during active decision-making in a conscious human subject. The analysis provides new understanding of serotonin's role in regulating human choice and how it operates alongside dopamine, a neurotransmitter long-associated with reward and its reinforcement.
"This is the first clear evidence, in any species, that the serotonergic system acts as an opponent to dopamine signaling," said Read Montague, the director of the VTCRI Human Neuroimaging Laboratory and the VTCRI Computational Psychiatry Unit and senior author on the paper. "If a person didn't expect a positive outcome in the game but they received one, dopamine goes up while serotonin goes down."
Montague is also a professor in the department of physics in Virginia Tech's College of Science and in the department of psychiatry and behavioral medicine in the Virginia Tech Carilion School of Medicine.
Ken Kishida, co-first author on the paper who was a research scientist at the VTCRI at the time of data collection, worked directly with neurosurgeons at Wake Forest School of Medicine to take measurements of patients undergoing  who volunteered to take part in the study.
Kishida, now an assistant professor in the department of physiology and pharmacology, as well as neurosurgery, at the Wake Forest School of Medicine, is developing this work with larger patient cohorts and increasingly realistic environments.
Subjects played a game related to gambling and, in this context, serotonin appears to act as a caution signal to prevent subjects from overreacting to an outcome. As the neurotransmitter is implicated in prevalent neuropsychiatric disorders, including depression, the researchers aim to uncover how the chemical aids humans in developing adaptive actions.
"We found that serotonin is highly active in the part of the brain that helps us to navigate bad outcomes in a way that ensures we don't overreact to them," said Rosalyn Moran, who is now a reader at the Institute for Psychiatry, Psychology and Neuroscience in King's College London. At the time of the date collection, Moran was an assistant professor at the VTCRI. Prior to her current position, she was a lecturer at the University of Bristol. "Serotonin acts in a way that reminds us to pay attention and learn from bad things, and to promote behaviors that are less risk seeking but also less risk averse. When there's an imbalance of serotonin, you might hide in a corner or run towards the fire, when you should really be doing something in between."
The researchers refer to this middle-of-the-road behavior promotion as a "keep calm and carry on" motif. Here, serotonin appears to temper excitement over positive outcomes while softening the potential disappointment of negative outcomes. This process can go awry when the neurotransmitter levels aren't in balance.
According to the National Institute of Mental Health, more than 10 million adults in the United States suffered at least one major depressive episode. About half of those people take anti-depressants, which primarily consist of selective serotonin reuptake inhibitors. The drugs are designed to keep serotonin at elevated levels in a person's brain by limiting its reabsorption.
"People take drugs to manipulate their serotonin when they have such low levels they can't work or they may even be a suicide threat," Montague said, noting that prior to his team's work, the best measurement tool for  was positron emission tomography (PET) scanning which measures one point every two minutes. "Now, we can measure a point every 100 milliseconds. It's a completely different ball game in terms of the time regime that we're in and the implications for understanding human behavior."
More information: Rosalyn J Moran et al, The Protective Action Encoding of Serotonin Transients in the Human Brain, Neuropsychopharmacology (2018).  DOI: 10.1038/npp.2017.304 
Journal reference: Neuropsychopharmacology
Provided by: Virginia Tech
https://medicalxpress.com/news/2018-04-calm-scientists-serotonin-humans.html

No comments:

Post a Comment