WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Wednesday, May 2, 2018

Study sheds light on how 'dopamine neurons' contribute to memory formation in humans

May 2, 2018 by Jonathan Diamond, Cedars-Sinai Medical Center

Research from Cedars-Sinai sheds light on how the human brain rapidly forms new memories, providing insights into potential new treatments for memory disorders. A new study examined neurons that produce dopamine, a compound that acts as a transmitter for nerve impulses. It found that these dopamine neurons play a critical role in the formation of episodic memory, which allows people to remember such things as where they parked the car in the morning and what they had for dinner last night. Credit: National Institutes of Health


Research from Cedars-Sinai sheds light on how the human brain rapidly forms new memories, providing insights into potential new treatments for memory disorders.

A new study examined neurons that produce , a compound that acts as a transmitter for nerve impulses. It found that these  play a critical role in the formation of , which allows people to remember such things as where they parked the car in the morning and what they had for dinner last night.
The study, published in the journal Current Biology, was co-authored by Ueli Rutishauser, PhD, the senior author and an associate professor in the Department of Neurosurgery at Cedars-Sinai. In the study, investigators observed the response of individual human dopamine neurons in undergoing  surgery to treat Parkinson's disease. The patients watched a sequence of images: Some had never been seen before and were thus "novel"; others were repeated and were therefore "familiar."
For each image, the patient pressed a button indicating whether it was novel or familiar. This allowed investigators to track the formation of , because an image was only novel once. Afterward, it formed a .
"What we discovered was that a subset of the  responded only when an image was novel, but not when it was familiar. In other words, it indicated if the image was new, but not if something was familiar," said Jan Kaminski, PhD, first author of the study and a project scientist at Cedars-Sinai. "This is an important new scientific discovery, because it has so far remained unclear how the dopaminergic system contributes to episodic memory formation."
This research was conducted while Parkinson's patients were having a deep brain stimulation device implanted to reduce their symptoms. As part of this procedure, during which patients are awake, an electrode is lowered into the brain to precisely localize the deep brain stimulation electrode. The target of the electrode is deep inside the brain, close to where the dopamine neurons are located.
"This procedure is one of the rare opportunities for researchers to observe the activity of dopamine neurons in an area of the  called the substania nigra in an awake human being, a type of recording only possible because the patient is undergoing a neurosurgical procedure," said Adam Mamelak, MD, professor of Neurosurgery at Cedars-Sinai and a co-investigator of the study. "This setup provides extremely valuable new insights into how humans form memories."
While not directly tied to research on specific ailments, the findings provide new information relevant to the understanding of certain diseases, Rutishauser said. "Dopamine neurons degrade in neurodegenerative diseases such as Parkinson's, which in addition to motor symptoms is often also accompanied by cognitive issues such as memory problems," he said. "What this paper shows is that dopamine  activate for novel stimuli. This short 'burst' of dopamine is what triggers learning."
A common treatment for patients with Parkinson's, for instance, is to take medications that increase dopamine to a steady level. But those drugs do not facilitate the short bursts that help in the formation of memory. "Our work reveals new avenues for treatments that can be explored, including those that restore short bursts of dopamine or that otherwise increase activity analogous to what dopamine is thought to do," Rutishauser said.
Apart from the scientific insights derived, this study also is an excellent demonstration of the power of interdisciplinary research and collaboration. "The study team was composed of scientists, neurologists and neurosurgeons and was only possible due to a close collaboration between Neurosurgery and Neurology. This kind of team science is a perfect demonstration of the groundbreaking basic science made possible by the close integration between clinical and research work at Cedars-Sinai," said Keith Black, MD, chairman of the Department of Neurosurgery.
More information: Jan KamiƄski et al, Novelty-Sensitive Dopaminergic Neurons in the Human Substantia Nigra Predict Success of Declarative Memory 
Journal reference: Current Biology 
Provided by: Cedars-Sinai Medical Center  
https://medicalxpress.com/news/2018-05-dopamine-neurons-contribute-memory-formation.html

No comments:

Post a Comment