WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Tuesday, July 30, 2019

Smart brain stimulators: Next-gen parkinson's disease therapy

JULY 29, 2019   by Laurie Fickman, University of Houston

New brain biomarkers are key to improving the technology to make brain stimulators responsive, or smart. Credit: University of Houston

Researchers at the University of Houston have found neuro biomarkers for Parkinson's disease that can help create the next generation of "smart" deep brain stimulators, able to respond to specific needs of Parkinson's disease patients. Those with the disease often undergo the high-frequency brain stimulation, a well-established therapy for the progressive nervous system disorder that affects movement, but the therapy has been imprecise.
Currently, stimulators can only be programmed clinically and are not adaptable to the fluctuating symptoms of the disease which can include tremors slowness or inability to walk. The  are key to improving the technology to make it responsive, or smart.
"We can now make the closed-loop stimulator adaptive to sense a patient's symptoms, so it can make the adjustments to the fluctuations in , and the patient no longer has to wait for weeks or months until the doctor can adjust the device," said Nuri Ince, associate professor of biomedical engineering. He and doctoral student Musa Ozturk, lead author of the paper, published their findings in Movement Disorders journal.
Nearly 10 million people worldwide are living with Parkinson's disease and approximately 60,000 Americans are diagnosed with the disease each year.
Redefining coupling
The team also reports a new understanding of the electrophysiology of Parkinson's disease after examining cross frequency coupling in the subthalamic nucleus of patients with Parkinson's disease both in the OFF state (before medication) and the ON state (after medication). Coupling, the interaction between the  waves, has been reported in the past, but its significance and functional role have not been well understood.
Associate professor of biomedical engineering Nuri Ince can now make closed-loop brain stimulators adaptive to sense a patient’s symptoms, so it can make the adjustments to the fluctuations in real time. Credit: University of Houston

The team reports that in the OFF state, the amplitude of high-frequency brain wave oscillations in the 200-300Hz range was coupled with the phase of low-beta (13-22Hz) in all patients. After transition to the ON state, three distinct coupling patterns were observed among subjects. Among these, patients showing ON coupling between high-beta (22-30Hz) and high-frequency oscillations in the 300-400Hz range had significantly greater improvement in bradykinesia, or slowness of movement, one of the cardinal manifestations of Parkinson's .
"Previous research showed coupling only existed in the basal ganglia of untreated patients and assumed to block the brain from functioning properly," said Ozturk. "We found that strong coupling also exists in treated patients, though at different frequencies, so in effect we have 'cleared coupling's name' and showed the frequencies involved in coupling impacts whether its effects are negative or positive."
More information: Musa Ozturk et al. Distinct subthalamic coupling in the ON state describes motor performance in Parkinson's disease, Movement Disorders (2019). DOI: 10.1002/mds.27800
Provided by University of Houston
https://medicalxpress.com/news/2019-07-smart-brain-next-gen-parkinson-disease.html

No comments:

Post a Comment