WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Monday, March 5, 2018

Changing size of neurons could shed light on new treatments for motor neurone disease

March 5, 2018, The Physiological Society


New research published in The Journal of Physiology improves our understanding of how motor nerve cells (neurons) respond to motor neurone disease, which could help us identify new treatment options.

Motor neurone disease referred to as Amyotrophic Lateral Sclerosis (ALS) is associated with the death of  (). It starts with the progressive loss of muscle function, followed by paralysis and ultimately death due to inability to breathe. Currently, there is no cure for ALS and no effective treatment to halt, or reverse, the progression of the disease. Most people with ALS die within 3 to 5 years from when symptoms first appear.
Previous studies in animal models of ALS have reported inconsistencies in the changes in the size of motor neurons. This new study is the first to show robust evidence that motor neurons change size over the course of disease progression and that, crucially, different types of neurons experience different changes. Specifically, the study shows that motor neuron types that are more vulnerable to the disease - that is, they die first - increase in size very early in the disease, before there are symptoms. Other motor neuron types that are more resistant to the disease (they die last) do not increase their size. These changes in the size of the motor neurons have a significant effect on their function and their fate as the diseases progresses.
The hope is that by understanding more about the mechanisms by which the neurons are changing size, it will be possible to identify and pursue new strategies for slowing or halting motor nerve cell death.
This research suggests motor neurons might alter their characteristics as a response to the disease in an attempt to compensate for loss of function. However these changes can lead to the neuron's early death. Furthermore the research supports the idea that the most vulnerable motor neurons undergo unique changes that might impact their ability to survive.
The research conducted by Wright State University involved identifying and measuring size changes of motor neuron types in a  of familial ALS. The motor neurons were examined at every key stage of the disease to observe when and where these changes begin, and how they progress through the entirety of the disease. Specific antibodies were used as markers to bind to the structure of  so that they could be easily viewed under high-power microscopes, and a computer program performed the three-dimensional measurement of the size and shape of a motor neuron's cell body.
It is important to note that the research was carried out in only one mouse model which was the most aggressive mouse model of ALS. Future work should focus on other mouse models of ALS in order to determine how relevant these results are likely to translate in human patients.
Sherif M. Elbasiouny, the lead investigator on the research commented potential areas for further study:
"This research approach could be applicable not only to ALS, but also to other neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This new understanding could help us to identify new therapeutic targets for improving motor neuron survival."
More information: S. Shekar Dukkipati et al, The vulnerability of spinal motoneurons and soma size plasticity in a mouse model of amyotrophic lateral sclerosis, The Journal of Physiology (2018).  DOI: 10.1113/JP275498 
Journal reference: Journal of Physiology 
Provided by: The Physiological Society 
https://medicalxpress.com/news/2018-03-size-neurons-treatments-motor-neurone.html

No comments:

Post a Comment