WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Monday, March 5, 2018

Filter' hones GWAS results to help researchers avoid dead ends

March 5, 2018, Johns Hopkins University School of Medicine



A genetics research team at Johns Hopkins Medicine has solved a dilemma facing researchers who use genomewide association studies (GWAS) by developing a new approach that strategically "filters" which genes are worth further study. The researchers hope this strategy will accelerate the study of diseases such as Parkinson's, Alzheimer's, schizophrenia and even addiction by helping researchers avoid "dead-end paths." They are optimistic that this strategy will gain widespread use and will save researchers time and money.

The findings were published March 1 in The American Journal of Human Genetics.
GWAS identify regions of the genome that can contain hundreds of potentially affected by a mutation. Selecting a gene to study from these extensive lists had been highly speculative. At best, the scientists say, there is a 50-50 chance that the gene closest to a mutation will even be active in the cell types affected by a .
"We are in a scenario where we can collect massive amounts of genetic data using GWAS, but are realizing that does not provide the biological context we need in order to understand the results," says Andy McCallion, Ph.D., assistant director of the  graduate program and associate professor of molecular and comparative pathobiology at the Johns Hopkins University School of Medicine.
McCallion's strategy to make sense of all this data looks at the  in cells affected by a disease, groups of genes that interact with one another, their vulnerability to mutation and information from past scientific studies to filter more than a thousand gene candidates for disease risk down to just a handful within any one implicated region.
The  focused on Parkinson's disease, which impacts dopamine neurons in the brain. GWAS identify 49 sections of the genome that have a mutation relevant to Parkinson's disease, says McCallion. By using the strategy, he and his team were able to filter down the thousands of genes in these sections to an average of two per region.
The researchers then asked whether the genes they found include those previously found to cause Parkinson's disease. Of the genes involved in Parkinson's disease that are present in indicated regions, the strategy captured all but one. "However, the one we didn't capture is not expressed in dopaminergic neurons," explains McCallion. "This gives us confidence that the other genes pointed out will be important to the disease."
The researchers hope to study the biological contexts of Parkinson's disease and other neurological diseases in the same way. They plan to investigate whether age, environment and disease state will allow them to hone the filter further for Parkinson's disease.
More information: Paul W. Hook et al, Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs Candidate Gene Selection for Sporadic Parkinson Disease, The American Journal of Human Genetics (2018). DOI: 10.1016/j.ajhg.2018.02.001 
https://medicalxpress.com/news/2018-03-filter-hones-gwas-results-dead.html

No comments:

Post a Comment