WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Thursday, March 17, 2016

Future brain therapies for Parkinson's possible with stem cell bioengineering innovation

PUBLIC RELEASE: 

Rutgers and Stanford scientists develop novel way to inject healthy human nerve cells into the brain
RUTGERS UNIVERSITY

ITHIS IMAGE SHOWS THAT REPROGRAMMED HUMAN NEURONS GROWN ON 3-D SCAFFOLDS (WITHIN THE WHITE DASH LINE) AND THEN TRANSPLANTED ONTO BRAIN TISSUE (RED) EXTENDED OUT (YELLOW LINES) AND INTEGRATED.

Scientists at Rutgers and Stanford universities have created a new technology that could someday help treat Parkinson's disease and other devastating brain-related conditions that affect millions of people.
The technology - a major innovation - involves converting adult tissue-derived stem cells into human neurons on 3-D "scaffolds," or tiny islands, of fibers, said Prabhas V. Moghe, a distinguished professor in the departments of Biomedical Engineering and Chemical and Biochemical Engineering at Rutgers University.
The scaffolds, loaded with healthy, beneficial neurons that can replace diseased cells, were injected into mouse brains.
"If you can transplant cells in a way that mimics how these cells are already configured in the brain, then you're one step closer to getting the brain to communicate with the cells that you're now transplanting," said Moghe, research director for the School of Engineering/Health Sciences Partnerships at Rutgers. "In this work, we've done that by providing cues for neurons to rapidly network in 3-D."
In their multidisciplinary study, published online today in Nature Communications, a dozen scientists from several Rutgers teams and Stanford discuss the 3-D scaffolds and their potentially widespread benefits.
Neurons, or nerve cells, are critical for human health and functioning. Human brains have about 100 billion neurons, which serve as messengers that transmit signals from the body to the brain and vice versa.
Moghe said a 3-D scaffold, developed by the scientists, consists of tiny polymer fibers. Hundreds of neurons attach to the fibers and branch out, sending their signals. Scaffolds are about 100 micrometers wide - roughly the width of a human hair.
"We take a whole bunch of these islands and then we inject them into the brain of the mouse," he said. "These neurons that are transplanted into the brain actually survived quite miraculously well. In fact, they survived so much better than the gold standard in the field."
Indeed, the scaffold technology results in a 100-fold increase in cell survival over other methods, Moghe said.
And that may eventually help people suffering from Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, Alzheimer's disease, spinal cord and traumatic brain injuries, and concussions, he said.
These diseases and conditions often arise from the loss of brain cells. Parkinson's disease, for example, is caused by the loss of brain cells that produce dopamine, a key neurotransmitter. Brain cell loss can lead to trembling in the hands, arms, legs, jaw and face; rigidity, or stiffness of the limbs and trunk; slowness of movement; and impaired balance and coordination, according to the National Institutes of Health.
The next step would be to further improve the scaffold biomaterials, allowing scientists to increase the number of implanted neurons in the brain. "The more neurons we can transplant, the more therapeutic benefits you can bring to the disease," Moghe said. "We want to try to stuff as many neurons as we can in as little space as we can."
The idea is to "create a very dense circuitry of neurons that is not only highly functioning but also better controlled," he said, adding that testing of mice with Parkinson's disease is underway to see if they improve or recover from the illness.
Eventually, with continued progress, the researchers could perform studies in people. Moghe estimated that it would take 10 to 20 years to test the technology in humans.
Developing the scaffold technology and reprogramming the stem cells in the scaffolds was "very hard team work," he said. "It took many years to get here, so there was a lot of sweat and toil."
http://www.eurekalert.org/pub_releases/2016-03/ru-fbt031616.php?

No comments:

Post a Comment