WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Thursday, May 19, 2016

Light-controlled genes and neurons poised for clinical trials

Sara Reardon
19 May 2016
As a human trial of optogenetics for retinal diseases begins, researchers eye other applications.

Haifeng Ye and Martin Fussenegger/ETH Zurich
Optogenetic therapies use light to control the behaviour of neurons and genes.

Every time something poked its foot, the mouse jumped in pain. Researchers at Circuit Therapeutics, a start-up company in Menlo Park, California, had made the animal hypersensitive to touch by tying off a nerve in its leg. But when they shone a yellow light on its foot while poking it, the mouse did not react.
The treatment is one of several nearing clinical use that draw on optogenetics — a technique in which light is used to control genes and neuron firing. In March, RetroSense Therapeutics of Ann Arbor, Michigan, began the first clinical-safety trial of an optogenetic therapy to treat the vision disorder retinitis pigmentosa.
Many scientists are waiting to see how the trial turns out before they decide how to move forward with their own research on a number of different applications. “I think it will embolden people if there’s good news,” says Robert Gereau, a pain researcher at Washington University in St Louis, Missouri. “It opens up a whole new range of possiblilities for how to treat neurological diseases.”

Retinitis pigmentosa destroys photoreceptors in the eye. RetroSense’s treatment seeks to compensate for this loss by conferring light sensitivity to retinal ganglion cells, which normally help to pass visual signals from photoreceptors to the brain. The therapy involves injecting patients who are blind or mostly blind with viruses carrying genes that encode light-sensitive proteins called opsins. The cells fire when stimulated with blue light, passing the visual information to the brain.

Chief executive Sean Ainsworth says that the company has injected several individuals in the United States with the treatment, and plans to enroll a total of 15 blind patients in its trial. RetroSense will follow them for two years, but may release some preliminary data later this year.
Rival company GenSight Biologics in Paris is attempting to treat retinitis pigmentosa with an opsin protein that responds to red light, which is less harsh on the eyes than blue light. At a meeting of the Association for Research in Vision and Ophthalmology in Seattle, Washington, earlier this month, GenSight researchers presented data showing that injecting a gene-carrying virus into healthy monkeys made their retinal ganglion cells responsive to light. Chief executive Bernard Gilly says that GenSight hopes to begin a small human trial early in 2017.
Neither company developing retinitis pigmentosa therapies expects patients to fully recover their vision. But Gilly and Ainsworth both say that the trials will be a success if participants gain the ability to navigate independently or even recognize faces.

Light touch
The eye is an enticing target for optogenetic therapies, in part because immune cells can’t enter the eye to attack the foreign proteins introduced during such treatments. But Circuit Therapeutics is taking a different approach with its pain therapy, relying on light’s ability to pass through the skin.
The nerves are tantalizingly poised at the surface of the skin, just waiting,” says Chris Towne, the company’s head of gene therapy. He presented preliminary data on the treatment on 4 May at a meeting of the American Society of Gene and Cell Therapy in Washington DC.
Unlike the retina therapies, Circuit Therapeutics’ treatment uses opsins that prevent neurons from firing. Shining yellow light on mice with these proteins reduces pain by preventing pain signals from travelling to the brain. Towne hopes that the approach, now being tested in pigs, will be the first non-retinal optogenetic therapy to reach the clinic. He envisions a light-producing patch that humans with severe pain sensitivity could wear on the skin and trigger when they perform a painful activity.

Researchers still have to determine how well opsins would function in human tissue and whether they will be toxic, but Gereau, who is also pursuing optogenetics for pain relief, says that the results are promising. In a paper in press at Nature Protocols, his group showed that flashing light at similar opsins inserted into the neurons of donated human organs can activate them or prevent them from firing.
Other applications are not far behind. Stimulating neurons in the inner ear with light has been shown to restore some neuron function in deaf mice. Some researchers are developing light-emitting implants that trigger nerves to control bladder function and vocal cords. Many others hope to use optogenetics to treat Parkinson’s disease and other brain disorders. Such a therapy would be similar to, but more precise than, current deep-brain-stimulation devices that trigger neuron firing.

Martin Fussenegger, a biologist at the Swiss Federal Institute of Technology in Zurich (ETH Zurich), says that scientists pursuing optogenetic therapies still face some technical challenges. These include developing smaller, less obtrusive light-emitting implants, and addressing the risk that optogenetic treatment could overheat neurons.

Still, researchers such as neuroscientist Ivan Soltesz of Stanford University in California are watching industry developments closely. He hopes to use optogenetics to stop seizures through a system that automatically flashes a light when a device detects brain patterns that indicate a seizure is about to start or is in progress. Such seizure-detection technologies have worked in animals3, and early trials of similar systems that use deep brain stimulation for this purpose are promising.

Soltesz says that optogenetics could allow more precise targeting of the right neurons, if scientists can deliver functioning opsins into brain cells. “As soon as I see that it's feasible I'm all over it,” he says.


Nature doi:10.1038/nature.2016.19886

http://www.nature.com/news/light-controlled-genes-and-neurons-poised-for-clinical-trials-1.19886

No comments:

Post a Comment