TRANSLATE

Welcome to Our Parkinson's Place


I copy news articles pertaining to research, news and information for Parkinson's disease, Dementia, the Brain, Depression and Parkinson's with Dystonia. I also post about Fundraising for Parkinson's disease and events. I try to be up-to-date as possible. I have Parkinson's
diseases as well and thought it would be nice to have a place where
updated news is in one place. That is why I began this blog.
I am not responsible for it's contents, I am just a copier of information searched on the computer. Please understand the copies are just that, copies and at times, I am unable to enlarge the wording or keep it uniformed as I wish. This is for you to read and to always keep an open mind.
Please discuss this with your doctor, should you have any questions, or concerns. Never do anything without talking to your doctor. I do not make any money from this website. I volunteer my time to help all of us to be informed. Please No advertisers, and No Information about Herbal treatments. This is a free site for all.
Thank you.


Tuesday, February 21, 2017

A novel principle to mobilize neurons for brain repair

February 21, 2017

A novel principle to mobilize neurons for brain repair. Credit: Medical University of Vienna


Restorative neuroscience, the study to identify means to replace damaged neurons and recover permanently lost mental or physical abilities, is a rapidly advancing scientific field considering our progressively aging society. Redirecting immature neurons that reside in specific brain areas towards the sites of brain damage is an appealing strategy for the therapy of acute brain injury or stroke.

A collaborative effort between the Center for Brain Research of Medical University of Vienna and the National Brain Research Program of Hungary/Semmelweis University in Budapest revealed that some mature neurons are able to reconfigure their local microenvironment such that it becomes conducive for adult-born immature neurons to extensively migrate. Thus, a molecular principle emerges that can allow researchers to best mobilize resident cellular reserves in the adult  and guide immature neurons to the sites of brain damage.

The adult brain has limited capacity of self-repair
In the aging Western society, acute  and chronic neurodegenerative conditions (e.g. Alzheimer's and Parkinson's diseases) are amongst the most debilitating diseases affecting hundreds of millions of people world-wide. Nerve cells are particularly sensitive to microenvironmental insults and their loss clearly manifests as neurological deficit. Since the innate ability of the adult human brain to regenerate is very poor and confined to its few specialized regions, a key question in present-day neurobiology is how to establish efficient strategies that can replace lost neurons, guide competent cells to the sites of injury and facilitate their functional integration to regain lost functionality. Cell replacement therapy thus offers frontline opportunities to design potent therapeutic interventions.
Neurons drive neurons: a new concept integrating brain activity with repair
Only two regions of the postnatal mammalian brain are known to retain their intrinsic potential to allow the generation of new neurons throughout life: the olfactory system decoding smell and the hippocampus acting as a key hub for memory encoding and storage. In humans, the generation of new neurons in the olfactory system rapidly ceases during early childhood. "Which are the processes that disallow this innate regenerative process in the human brain and how can dormant progenitors be reinstated to produce new neurons and guide those towards brain areas that require repair?" is a central yet unresolved question for brain repair strategies.
For neuronal migration, the widely-accepted concept is that support cells called astroglia are of primary importance to promote the movement of adult-born neurons through chemical signals and physical interactions. The new study involving researchers from the Department of Molecular Neurosciences of the Center for Brain Research goes well beyond these known frontiers through the discovery that the migration of new-born neurons requires resident, differentiated nerve cells to "clear their path" by digesting away some of the glue that fills the space between . This process is dependent on the activity of resident neurons, thus suggesting the integration of the ancient developmental process of active cell movement with the integrative capacity and activity patterns of the brain. "By realizing that differentiated neurons are critical operators in this process we finally lay our hands on an "on switch" which we can use to produce a molecular landing strip for migrating neuroblasts to home in at areas of critical need" says Alán Alpár, senior author of the study.
Opportunities for restorative neuroscience
Tibor Harkany, Professor of Molecular Neurosciences at the Medical University of Vienna goes one step further "We mapped the entire molecular machinery used by differentiated neurons to make way for their migrating adult-born replacements. This clearly offers a pharmacological concept to reroute neurons in sufficient quantities for neurorepair once damage occurs. Even though distances can be considerably long, we are confident that molecular means exist to tackle these challenges".
Brain activity defines therapeutic success?
The realization that differentiated neurons hold the key to directional cell migration is of enormous significance since they are wired into the brain circuitry, receive information from not only adjacent but also far-away regions and are activated by these specific connections at precisely given times. Consequently, migration controlled by the newly described specific neuronal subset can be aligned with brain activity, or conversely, with inactivity as evoked by neuronal loss during brain diseases. "To identify the physiological stimuli and stressors, which activate these guide- will herald a new and exciting opportunity for regenerative neuroscience" adds Tomas Hökfelt, Guest Professor at the Center for Brain Research.
More information: "Secretagogin-dependent matrix metalloprotease-2 release from neurons regulates neuroblast migration" Proceedings of the National Academy of Sciences. DOI: www.pnas.org/cgi/doi/10.1073/pnas.1700662114 

No comments:

Post a Comment