WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Thursday, February 9, 2017

Newly found mechanism for protecting neurons could underlie brain disease

February 9, 2017

Credit: Chris Crocker/Albert Einstein College of Medicine


To stay healthy, neurons must prevent protein aggregates and defective organelles such as mitochondria from accumulating inside them. We now know that an animal species has found a solution to its neuronal trash problem—one that might also be present in humans and lead to neurodegenerative disease if it becomes dysfunctional.

Researchers studying the roundworm C. elegans have discovered that  in adult worms possess a previously unrecognized garbage-removal mechanism: The neurons expel large (4- micron diameter) membrane-bound vesicles (dubbed "exophers") that are filled with clumped  and damaged cellular organelles including mitochondria. The findings are described in a paper published in today's issue of Nature. One of the paper's senior authors is David H. Hall, Ph.D., professor in the Dominick P. Purpura Department of Neuroscience.
The researchers observed that inhibiting other avenues of protein degradation—autophagy and proteasomal digestion, for example—enhanced exopher production. And when roundworm neurons were induced to express high levels of neurotoxic huntingtin protein, they produced significantly more exophers than did neurons in control worms. Inducing neurons to express another toxic protein (amyloid-forming human Alzheimer's disease fragment) yielded similar results.
Importantly, neurons stressed by toxic proteins seem to function better after they generate exophers. For example, several strains of roundworm express altered proteins that progressively impair touch sensation. At midlife in these strains, the touch sensitivity of a particular touch-detector neuron was enhanced in worms that produced exophers earlier in their lives compared with worms that had not.
After discovering that exophers can also expel mitochondria, the researchers found they could trigger exopher production by stressing, damaging or otherwise impairing mitochondrial quality. For example, increased production of neuronal exophers was observed in roundworm strains in which either of two genes involved in mitochondrial maintenance were rendered defective.
What is the fate of exophers and their trash after neurons jettison them? Data supported by electron microscopy suggested that at least some of the material is degraded by neighboring cells of the worm's hypodermis (the cell layer that secretes its outer cuticle layer). But a portion of the exopher material entered the worm's body cavity and was scavenged by distant cells. If human neurons possess the equivalent of exophers, the researchers note, then this transfer of potentially toxic material could have implications for neurological disease.
Recent findings indicate that mammalian neurons can expel protein aggregates associated with Alzheimer's, Parkinson's and prion disease. Once outside the neuron, these aggregates can be taken up by other cells—possibly the way disease damage spreads in the brain.
"We propose that exophers are components of a conserved mechanism that constitutes a fundamental, but formerly unrecognized, branch of neuronal proteostasis [protein homeostasis] and mitochondrial quality control, which, when dysfunctional or diminished with age, might actively contribute to pathogenesis in human neurodegenerative disease and brain aging," the researchers concluded.
More information: Ilija Melentijevic et al. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress, Nature (2017). DOI: 10.1038/nature21362
Journal reference: Nature
https://medicalxpress.com/news/2017-02-newly-mechanism-neurons-underlie-brain.html

No comments:

Post a Comment