WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Thursday, June 15, 2017

Hi-res view of protein complex shows how it breaks up protein tangles

June 15, 2017



Misfolded proteins are the culprits behind amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and other neurodegenerative brain disorders. These distorted proteins are unable to perform their normal functions and cause devastating problems for neurons.

Currently, there is no way to untangle the knotted mass of these proteins to treat .
A high-resolution view of the structure of Hsp104 ( 104), a natural yeast protein nanomachine with six subunits, has been acquired by James Shorter, PhD, an associate professor of Biochemistry and Biophysics in the Perelman School of Medicine at the University of Pennsylvania, and colleagues at the University of Michigan. The Shorter lab has been working on Hsp104 for close to a decade as a way to dismantle harmful protein clumps in disease. The team described their findings in Science this week.
Shorter teamed with colleagues at Michigan who use cutting-edge cryo-EM to provide the clearest image to date of Hsp104 in action. The Penn team provided the highly purified Hsp104 proteins for the study.
"This superb collaboration has yielded the highest resolution picture of Hsp104 caught in the act of processing a protein," Shorter said. "We can now see the moving parts of the Hsp104 complex and how we might tune it to optimally attack neurodegenerative disease proteins."
Hsp104 pulls in proteins it "processes" through a central channel, but scientists had not seen this at high resolution before this study. "With this more-in-focus view, we can see parts of its structure that we want to engineer to make better on-target therapeutics for neurodegenerative diseases," said JiaBei Lin, PhD, co-author and postdoctoral fellow in the Shorter lab.
Normally, Hsp104 is a "disaggregase" enyzme, which dissolves previously aggregated proteins and helps them acquire the correct shape. Although Hsp104 is found in most organisms on the planet, it has no analogue in humans or animals. Shorter asked whether it could be introduced as a drug to dismantle the protein clumps that characterize some diseases. In previous studies, Shorter's lab established that the natural version of Hsp104 is active against neurodegenerative proteins such as alpha-synuclein.
Hsp104 pulls out one polypeptide at a time from the tangles of protein fibrils. The six subunits of the Hsp104 complex hydrolyze ATP as it climbs up the polypeptide strand, which ultimately gets pulled out of the aggregate. Once released, the polypeptide can refold or be degraded.
The team has already made some tweaks to Hsp104 by mutating specific residues to enhance its activity. Working to break up TDP-43, FUS, and alpha-synuclein disease clumps, the reprogrammed Hsp104 pulls these proteins apart better.
"It appears to pull substrates through stepwise, like a ratchet," said senior study author Daniel Southworth, PhD, an assistant professor at the University of Michigan Life Sciences Institute. "We can see how the proteins in the machine rearrange between different states to grab onto the next site on the substrate."
"The study helps us to understand how cells can break apart toxic protein aggregates to restore  function," Shorter said. "Finally having a clear picture of this remarkable nanomachine will empower our designs for therapeutic versions that work in humans."
Journal reference: Science

Hi-res view of protein complex shows how it breaks up protein tanglesHi-res view of protein complex shows how it breaks up protein tangles: A new, high-resolution view of the structure of Hsp104 (heat shock protein 104), a natural yeast protein nanomachine with six subunits, may show news ways to dismantle harmful protein clumps in disease.

https://medicalxpress.com/news/2017-06-hi-res-view-protein-complex-tangles.html

No comments:

Post a Comment