WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Friday, November 10, 2017

Biomarker may predict early Alzheimer's disease

November 10, 2017

DAG (green-labeled peptide) targeting to the brain blood vessel (labeled red) in the hippocampus of the Alzheimer brain. Credit: Ruoslahti Lab, SBP


Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified a peptide that could lead to the early detection of Alzheimer's disease (AD). The discovery, published in Nature Communications, may also provide a means of homing drugs to diseased areas of the brain to treat AD, Parkinson's disease, as well as glioblastoma, brain injuries and stroke.

"Our goal was to find a new biomarker for AD," says Aman Mann, Ph.D., research assistant professor at SBP who shares the lead authorship of the study with Pablo Scodeller, Ph.D., a postdoctoral researcher at SBP. "We have identified a peptide (DAG) that recognizes a protein that is elevated in the  of AD mice and human patients. The DAG target, connective tissue growth factor (CTGF) appears in the AD brain before , the pathological hallmark of AD."
"CTGF is a protein that is made in the brain in response to inflammation and tissue repair," explains Mann. "Our finding that connects elevated levels of CTGF with AD is consistent with the growing body of evidence suggesting that inflammation plays an important role in the development of AD."
The research team identified the DAG peptide using in vivo phage display screening at different stages of AD development in a mouse model. In young AD mice, DAG detected the earliest stage of the disease. If the early appearance of the DAG target holds true in humans, it would mean that DAG could be used as a tool to identify patients at early, pre-symptomatic stages of the disease when treatments already available may still be effective.
"Importantly, we showed that DAG binds to cells and brain from AD human patients in a CTGF-dependent manner" says Mann. "This is consistent with an earlier report of high CTGF expression in the brains of AD patients."

https://youtu.be/_I3CeUIVgq4
Dr. Aman Mann of the Sanford Burnham Prebys Medical Discovery Institute discusses a finding that may lead to earlier detection and treatment of Alzheimer's disease. Credit: Kristen Cusato

"Our findings show that endothelial cells, the cells that form the inner lining of blood vessels, bind our DAG peptide in the parts of the mouse brain affected by the disease," says Erkki Ruoslahti, M.D., Ph.D., distinguished professor at SBP and senior author of the paper. "This is very significant because the endothelial cells are readily accessible for probes injected into the blood stream, whereas other types of cells in the brain are behind a protective wall called the blood-brain barrier. The change in AD blood vessels gives us an opportunity to create a diagnostic method that can detect AD at the earliest stage possible.
"But first we need to develop an imaging platform for the technology, using MRI or PET scans to differentiate live AD mice from normal mice. Once that's done successfully, we can focus on humans," adds Ruoslahti.
"As our research progresses we also foresee CTGF as a potential therapeutic target that is unrelated to amyloid beta (Aβ), the toxic protein that creates brain plaques," says Ruoslahti. "Given the number of failed clinical studies that have sought to treat AD patients by targeting Aβ, it's clear that treatments will need to be given earlier—before amyloid plaques appear—or have to target entirely different pathways.
"DAG has the potential to fill both roles—identifying at risk individuals prior to overt signs of AD and targeted delivery of drugs to diseased areas of the brain. Perhaps CTGF itself can be a drug target in AD and other  disorders linked to inflammation. We'll just have to learn more about its role in these diseases".
This technology has been licensed to a startup company, AivoCode Inc.
Journal reference: Nature Communications 
https://medicalxpress.com/news/2017-11-biomarker-early-alzheimer-disease.html

No comments:

Post a Comment