WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Wednesday, March 21, 2018

Mutation Plays a Role in Fatty Plaque Formation in Brain, Study Suggests

 MARCH 21, 2018    BY ALICE MELÃO 



A common Parkinson’s gene mutation plays a role in the formation of fatty plaque in the brain that can destroy nerve cells controlling movement, a study suggests.
Five to 10 percent of Parkinson’s patients have a mutation of the GBA1 gene. It generates an enzyme responsible for breaking down a large fat molecule into smaller ones called ceramides.
Fat molecules are the glue that helps proteins maintain a complex design in cell membranes.   The GBA1 enzyme is supposed to ensure that the glue is strong enough to hold the mosaic together.
In addition to ensuring cell membrane integrity, the enzyme is also responsible for the normal functioning of the cell’s recycling system.
Johns Hopkins researchers used the gene editing technology CRISPR-Cas9 to remove the enzyme from lab-grown brain cells. As expected, its depletion led to an accumulation of a fatty molecule called glucosylceramide and increased cell stress.
Strikingly, when glucosylceramide levels rose, the number of stable alpha-synuclein tetramers — a hallmark of Parkinson’s disease — fell.
Researchers then treated the modified brain cells with Zavesca (miglustat), an approved therapy for the treatment of Gaucher disease type 1 that prevents fatty molecule buildups.
The treatment led to cells recovering their levels of alpha-synuclein tetramers. This suggested that high levels of glucosylceramide destabilize the cell membrane mix. The result is alpha-synuclein tetramers falling out of the mosaic and breaking into single alpha-synucleins, the researchers said.
To further assess the potential of targeting GBA1 to treat Parkinson’s, the team used brain cells collected from a patient with a mutated GBA1 gene. These cells had lower than normal GBA1 activity and higher than normal levels of glucosylceramide. The result was an  accumulation of alpha-synuclein monomers.
Once more, treatment with Zavesca promoted alpha-synuclein stability and tetramer formation, while preventing the accumulation of alpha-synuclein fibrils that is characteristic of Parkinson’s disease. In addition, the researchers showed that increasing the amount of functional GBA1 with gene therapy also promoted alpha-synuclein stability.
“We believe this study gives us a better understanding of the effects of GBA1 mutation and its role in the development and progress of Parkinson’s disease,” Dr. Han Seok Ko, an associate professor of neurology at the Johns Hopkins University School of Medicine’s  Institute for Cell Engineering, said in a press release.
The team plans to continue study the enzyme’s effect on alpha-synuclein and nerve cell health.
https://parkinsonsnewstoday.com/2018/03/21/parkinsons-mutation-fatty-brain-plaque-formation/

No comments:

Post a Comment