WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Tuesday, May 29, 2018

Impaired energy production may explain why brain is susceptible to age-related diseases

May 29, 2018, Salk Institute

Aged mitochondria (green) in old neurons (gray) appear mostly as small punctate dots rather than a large interconnected network. Credit: Salk Institute


Defective energy production in old neurons might explain why our brains are so prone to age-related diseases. Salk researchers used a new method to discover that cells from older individuals had impaired mitochondria—the power stations of cells—and reduced energy production. A better understanding of the effects of aging on mitochondria could reveal more about the link between mitochondrial dysfunction and age-related brain diseases, such as Alzheimer's and Parkinson's. The work appeared in Cell Reports on May 29, 2018.

"Most other methods use chemical stresses on  to simulate aging," says senior author Rusty Gage, a professor in Salk's Laboratory of Genetics. "Our system has the advantage of showing what happens to  that age naturally, within the human body."
Mitochondria, small structures found within cells, are responsible for converting our food into chemical energy our cells can use. Defects in can cause , but researchers also know that mitochondria become less efficient with aging and can drive age-related disorders.
Previously, the Gage lab developed a method to directly convert skin cells into neurons (called induced neurons, or iNs). Most methods to create neurons from patient cells rely on an intermediary stem cell step (creating what are called induced ), which resets cellular markers of aging. But the Gage lab's iNs retained signs of aging, including changes to gene activity and the cells' nuclei, the team reported in 2015.
In the new work, the researchers asked whether mitochondria in the cells also retained hallmarks of aging during the iN conversion process. Using skin cells collected from humans ranging in age from 0 to 89 years old, the team created iNs from each donor and then used a variety of methods to study the mitochondria of each set of cells.
Illustration represents a youthful neuronal mitochondrion with normal energy production (left side) juxtaposed with an aging mitochondrion with dysfunctional energy production (right side). Credit: Veronika Mertens
Mitochondria in the skin cells isolated from each person showed few age-related changes. However, once the cells were directly converted to neurons, mitochondria from older donors were significantly different. Mitochondrial genes related to energy generation were turned off and the mitochondria were less dense, more fragmented and generated less energy.
"Pretty much every area we looked at—functional, genetic, and morphological—had defects," says Jerome Mertens, a Salk staff scientist and co-corresponding author of the new paper.
The researchers hypothesized that the reason the mitochondria of iNs were more impacted by aging than the mitochondria of skin cells was that neurons rely more heavily on mitochondria for their  needs. "If you have an old car with a bad engine that sits in your garage every day, it doesn't matter," Mertens says. "But if you're commuting with that car, the engine becomes a big problem."
The finding shows how aging can impact organs differently throughout the body.
The researchers next want to begin to apply their method to study age-related diseases, including Alzheimer's and Parkinson's. In the past, mitochondrial defects have been implicated in these diseases. By collecting  from patients and creating iNs, the team can look at how  from patients with those diseases are different from neuronal mitochondria from unaffected older individuals.
"There is no other in vitro human neuronal model to study aging," says Yongsung Kim, a research associate and first author of the paper. "So the big takeaway from our paper is that we developed a tool that enables us to study neurological aging and ."
Journal reference: Cell Reports 
Provided by: Salk Institute
https://medicalxpress.com/news/2018-05-impaired-energy-production-brain-susceptible.html

No comments:

Post a Comment