WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Tuesday, June 26, 2018

New nuclear medicine technique could help tackle brain disease

June 25, 2018


(A) Representative contrast-enhanced T2-weighted MR coronal image of AAV transduced mouse brain. (B) Corresponding merged 18F-DASA-23 PET/MR images (10 to 30 min summed 18F-DASA-23 activity). White arrow indicates regions of radiotracer uptake, corresponding to the transduced region. (C) Autoradiography of mouse brain sections excised 1 hour after radiotracer administration, and (D) an immunofluorescence stain for PKM2. Credit: T Haywood et al., Stanford University School of Medicine, Stanford, Calif.

A new molecular imaging method can monitor the success of gene therapy in all areas of the brain, potentially allowing physicians to more effectively tackle brain conditions such as Parkinson's disease, Alzheimer's disease and multiple sclerosis. The research was presented today at the SNMMI 2018 Annual Meeting, June 23-26 in Philadelphia.

Gene therapy for diseases of the central nervous system (CNS) is a growing field; however, progress is limited by the absence of imaging techniques that can successfully monitor delivery of the therapy. Although  systems have been a key tool in molecular imaging for a number of years, they have not allowed monitoring of all areas of the . A new  (PET) reporter gene/probe system makes it possible, for the first time, to noninvasively monitor the level and location of gene  in all areas of the brain, giving the medical team an early indication of the likelihood of treatment success.

"It is challenging to find a reporter gene and imaging agent that can be used in all areas of the brain with a high signal-to-background ratio," said Thomas Haywood, Ph.D., from the department of radiology at Stanford University, Stanford, California. "18F-DASA-23 is a novel radiotracer, or reporter probe, developed in the Gambhir lab at Stanford that is capable of crossing the blood-brain barrier and targeting the pyruvate kinase M2 protein in the central nervous system with minimal endogenous expression in the brain," he explained. "This allows us to monitor reporter gene expression and ultimately therapeutic gene expression for gene therapy in all regions of the brain." The radiotracer has recently undergone first-in-human trials at Stanford for the early detection of therapeutic response in glioblastoma.

In the study, after validating the utility of  M2 (PKM2) as a PET reporter gene, mice were infected with a virus containing the gene, then imaged with the 18F-DASA-23 radiotracer over a period of two months to observe the increase in PKM2 expression over time. Results, confirmed by 18F-DASA-23 uptake studies and mRNA analysis, showed a good correlation between PKM2 and the radiotracer (see figure below). Further analysis showed an increase in PKM2 expression in infected mice when compared to controls. These encouraging data suggest PKM2 has the potential to be further developed into a PET reporter gene system for the imaging of gene therapy in the central nervous system.

"Having a reporter gene/reporter probe system that allows monitoring of all areas of the brain opens the door to more accurate and less invasive imaging of the brain and of  used to tackle diseases of the brain," Haywood said.

More information: Scientific Paper 78: Thomas Haywood, Corinne Beinat, Gayatri Gowrishankar, Chirag B. Patel, Department of Radiology, Stanford University; Israt S. Alam, Stanford University; and Sanjiv S. Gambhir, Department of Radiology, Stanford University School of Medicine, Stanford, CA. "A Novel Positron Emission Tomography Reporter Gene/Reporter Probe for the Central Nervous System," SNMMI 2018 Annual Meeting, June 23-26, 2018, Philadelphia. jnm.snmjournals.org/content/59 … 74-abc7-5db0beb2fd3c

Provided by: Society of Nuclear Medicine and Molecular Imaging

https://medicalxpress.com/news/2018-06-nuclear-medicine-technique-tackle-brain.html

No comments:

Post a Comment