WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Tuesday, August 21, 2018

Genetic model offers elegant tool for testing Parkinson's disease therapies

 August 21, 2018,   University of British Columbia

Immunohistochemistry for alpha-synuclein showing positive staining (brown) of an intraneural Lewy-body in the Substantia nigra in Parkinson's disease. Credit: Wikipedia


For the past decade, Parkinson's disease researchers have relied on the experimental equivalent of using a sledgehammer to tune a guitar to test new therapies for the disease. This may be a reason clinical trials of promising neuroprotective drugs fail. But, in new research published today in Nature Parkinson's Disease, University of British Columbia researchers may have found the ideal tool for the job.

"We believe we've found an approach that is most relevant to humans, in that our models of gene dysfunction mimic the etiology of Parkinson's disease rather than its pathology— meaning its beginning rather than its end," says Matthew Farrer, the study's lead investigator and a researcher at the Djavad Mowafaghian Centre for Brain Health at UBC. "This means we're looking at the disease before it becomes symptomatic, before it begins affecting an individual's motor skills or cognition."

Parkinson's disease symptoms are associated with the progressive loss of . Over time, these cells effectively become out of tune, and eventually they stop working altogether.

Until now, the best available experimental models of the disease were based on flooding the brain with alpha-synuclein—a protein in the brain that, when it accumulates abnormally into clumps, is linked to Parkinson's—or using neurotoxins to destroy dopamine-producing cells. These conventional models exhibit the classic motor and behavioural symptoms of the disease, which is why they have been widely adopted by the Parkinson's field, but the sledgehammer approach to inducing the disease means the cells die—the guitar is smashed—before any of the subtle changes in the tune can be measured.

According to Parkinson Canada, the disease affects about 100,000 Canadians and 7 million people worldwide. A great many patients are put at elevated risk for disease because of mutations in a gene called LRRK2—a discovery Farrer and colleagues made in 2004.

So far, no LRRK2-specific drugs developed as a neuroprotective treatment for Parkinson's have achieved FDA approval for the treatment of Parkinson's disease, and some companies have abandoned their LRRK2 programs due to potential side effects.

The new model, developed by Farrer and his team could offer the precise tool that researchers have long hoped would deliver the impact of LRRK2 inhibitors and other disease-modifying drugs.

The model—known as a VPS35 D620N knock-in (VKI)—induces the biology of a disease-causing gene rather than the symptoms of the disease. Although the model shows no behavioral signs of Parkinson's, their new study found the changes in biology are clear and elegantly precise. As a tool for preclinical research, it gives scientists something to measure and, ultimately, to fix with promising neuroprotective drugs.

The lab's recent work to characterize the VKI model shows it is critically important in dopamine neurotransmission, where it regulates the activity-dependent recycling of the dopamine transporter. While the team was the first to suspect a relationship between LRRK2 and VPS35 in 2012, when they initially discovered the role of VPS35 in Parkinson's, it is novel to observe activity-dependent changes in dopamine release and reuptake due to a single point mutation.

"What's really exciting for us is that everything we're seeing is pointing to an early change in synaptic activity," says Igor Tatarnikov, a graduate student working with Farrer to characterize the VKI . "It's something we might rescue with the right drugs, and something we might visualize, because LRRK2 and VPS35 affect the same biological pathway. We're hoping to use PET imaging to provide a clinically relevant biomarker, which would be relevant beyond genetic forms of the disease. In the future, our hope is that people who carry the VPS35 mutation may be an ideal group for ."

"VKI mice provide one of the tools to quantify the minimal dose of LRRK2 kinase inhibitors to see neuroprotective benefits, and so advance therapeutic trials in human patients," says Farrer. "Imagine if we could begin helping people at risk of Parkinson's  as early as their 40s and 50s. We believe we're in the right key with LRRK2 and VPS35, now it's just a matter of arranging the notes."


https://medicalxpress.com/news/2018-08-genetic-elegant-tool-parkinson-disease.html

No comments:

Post a Comment