WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Wednesday, August 1, 2018

Growing "Alzheimer's in a dish" reveals new potential treatment target

July 31, 2018         

Researchers have grown "Alzheimer's-in-a-dish" to study the progression of the disease and find new potential ways to treat it(Credit: SSilver/Depositphotos)


To improve our understanding and find new potential ways to treat Alzheimer's disease, researchers at Massachusetts General Hospital have produced one of the most detailed models of “Alzheimer’s-in-a-dish,” using cultures of human neural cells that display neuroinflammation.

The human brain is a complicated piece of machinery, which makes it difficult to untangle illnesses like Alzheimer's. To improve our understanding and find new potential ways to treat the disease, researchers at Massachusetts General Hospital (MGH) have now produced one of the most detailed models of "Alzheimer's-in-a-dish," using cultures of human neural cells that display neuroinflammation, a key element of the disease.

This isn't the first time a model of Alzheimer's has been grown in the lab. Back in 2014, the MGH team cultivated human neural cells that carried genes associated with familial Alzheimer's disease, then used a gel-based system that induced these neurons to develop tangles and amyloid-beta plaques, which are implicated in the disease. But that model doesn't capture the full story.
"Our original 'Alzheimer's in a dish' system recapitulated the plaques and tangles typically seen in the brains of patients with Alzheimer's disease, but did not induce neuroinflammation," says Rudolph Tanzi, co-senior author of the paper. "Studies have shown that we can have many plaques and tangles in our brains with no symptoms, but when neuroinflammation kicks in, exponentially more neurons die and cognitive impairment leading to dementia is induced. A complete model of Alzheimer's pathology needs to incorporate that 'third leg of the stool.'"
To do so, the team repeated the experiment inside a microfluidic device developed at the University of North Carolina. This device is made up of two circular chambers, one inside the other, and neural cells with a genetic predisposition towards familial Alzheimer's were cultured in the inner chamber. After a few weeks, the neurons and other cells were found to have higher levels of amyloid-beta and tau – proteins that contribute to the neurodegenerative disease. They also had more inflammatory factors, one of the culprits behind neuroinflammation.
Then, the researchers added human microglia to the outer chamber. As the immune cells of the nervous system, the microglia were quickly activated in response to the proteins in the inner chamber's neurons and began to migrate inwards. Once inside the inner chamber, the microglia began attacking the neurons, damaging vital structures and raising levels of inflammatory factors. After six days, 20 percent of the neurons and support cells had died as a result.
Six days after the nervous system immune cells were introduced to the "Alzheimer's-in-a-dish" culture, 20 percent of the neurons and supporting cells had died(Credit: Harvard)
Having observed this Alzheimer's-in-a-dish play out, the team may have uncovered new ways to fight back, which is good news, given that the long-held belief that targeting the plaques themselves is currently being questioned after a string of failures in clinical trials.
"We also found that blocking two receptors in microglial cells – interferon receptor gamma and toll-like receptor 4 – could prevent neuroinflammation, which opens up new opportunities for drug discovery," says Tanzi. "This system should help us better understand the timeline by which these pathological events lead to dementia and enable us to screen for drugs that stop plaque deposition, tangle formation, and the resultant neuroinflammation."
The research was published in the journal Nature Neuroscience.
Source: Harvard
https://newatlas.com/alzheimers-in-a-dish-inflammation/55709/

No comments:

Post a Comment