WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Thursday, October 11, 2018

Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons

 October 11, 2018, Cell Press

Dr. Chun-Li Zhang and Lei-Lei Wang. Credit: David Gresham / UT Southwestern


Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells. Their findings, appearing October 11 in the journal Stem Cell Reports, reveal that—contrary to previous belief—it is possible to reprogram one mature neuron type into another without first reverting it to a stem-cell-like state.

"Initially, I was a little disappointed that we converted medium spiny instead of glia," says first author Chun-Li Zhang, a professor of molecular biology at UT Southwestern Medical Center. "But when we realized the novelty of our results, we were kind of amazed. To our knowledge, changing the phenotype of resident, already-mature neurons has never been accomplished before."

Dopaminergic cells are important for controlling voluntary movement and emotions such as motivation and reward that drive behavior. They are often lost in movement disorders like Parkinson's disease. Many neuroscientists are interested in the therapeutic potential of creating new dopaminergic cells.

Zhang and his team attempted to induce the glia—cells surrounding neurons with protective and other functions—to morph inside live mouse brains. They injected a viral vector to express a cocktail of proteins into the striatum, a region of the brain rich in GABAergic neurons that help control muscle movement. The cocktail consisted of three transcription factors, NURR1, FOXA2, and LMX1A, which help decode genetic instructions for building dopaminergic neurons. The mice were also treated with valproic acid, which was previously shown to play a role in cell reprogramming.

Dr. Chun-Li Zhang and Lei-Lei Wang. Credit: David Gresham / UT Southwestern


The team targeted  due to their ability to regenerate and multiply more readily than neurons, theoretically making them better therapeutic candidates. But when they looked at the brain slices of the injected mice, they found the glia unchanged. Instead, some GABAergic medium spiny neurons—cells that are directly controlled by dopaminergic neurons—had transformed.

The new cells appeared to behave more like native dopaminergic neurons, although they also retained residual features of the medium spiny neurons. They showed rhythmic activity and formed network connections similarly to  cells, as the researchers discovered through electrode recordings and reporter assays.

Subsequent immunohistochemistry and reporter assays revealed that the new sprung from mature medium spiny neurons without passing through a proliferative progenitor stage.

Induced dopaminergic neurons in green. Credit: Lei-Lei Wang / UT Southwestern

"Our results offer a new perspective on neuronal plasticity," says Zhang. "We traditionally think of mature cell identity and function as fixed, but our findings suggest that they are more dependent on biochemical factors in their environment than we thought. This could mean that no cell type is fixed even for a functional, mature neuron."

Zhang and his team next seek to address some of the limitations of their findings by clarifying the exact reprogramming mechanism and, of course, identifying the conditions that can reprogram glia into , as they originally sought.

"We hope that the ability to change neuron identity will someday be directed to treat neurological diseases, including Parkinson's disease," says Zhang.

More information: Stem Cell Reports, Zhang et al.: "Phenotypic reprogramming of striatal neurons into dopaminergic neuron-like cells in the adult mouse brain" https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(18)30389-8,DOI: 10.1016/j.stemcr.2018.09.004

Journal reference: Stem Cell Reports

Provided by: Cell Press

https://medicalxpress.com/news/2018-10-scientists-accidentally-reprogram-mature-mouse.html

No comments:

Post a Comment