WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Thursday, October 18, 2018

Study points to new method to deliver drugs to the brain

 October 18, 2018, University of Rochester Medical Center




Researchers at the University of Rochester Medical Center (URMC) have discovered a potentially new approach to deliver therapeutics more effectively to the brain. The research could have implications for the treatment of a wide range of diseases, including Alzheimer's, Parkinson's, ALS, and brain cancer.

"Improving the delivery of drugs to the central nervous system is a considerable clinical challenge," said Maiken Nedergaard M.D., D.M.Sc., co-director of the University of Rochester Medical Center (URMC) Center for Translational Neuromedicine and lead author of the article which appears today in the journal JCI Insight. "The findings of this study demonstrate that the 's waste removal system could be harnessed to transport drugs quickly and efficiently into the brain."

Many promising therapies for diseases of the central nervous system have failed in clinical trials because of the difficulty in getting enough of the drugs into the brain to be effective. This is because the brain maintains its own closed environment that is protected by a complex system of molecular gateways—called the blood-brain barrier—that tightly control what can enter and exit the brain.

A prominent example of this challenge is efforts to use  to treat the buildup of  that accumulate in the brains of people with Alzheimer's. Because antibodies are typically administered intravenously, the entry of these large proteins into the brain is thwarted by the blood-brain barrier and, as a result, it is estimated that only two percent actually enter the organ.

The new research taps into the power of the glymphatic system, the brain's unique process of removing waste that was first discovered by Nedergaard in 2012. The system consists of a plumbing system that piggybacks on the brain's blood vessels and pumps  (CSF) through the brain's tissue, flushing away waste. Nedergaard's lab has also shown that the glymphatic system works primarily while we sleep, could be a key player in diseases like Alzheimer's, and is disrupted after traumatic brain injury.

In the study, the researchers took advantage of the mechanics of the glymphatic system to deliver drugs deep into the brain. In the experiments, which were conducted on mice, the researchers administered antibodies directly into CSF. They then injected the animals with hypertonic saline, a treatment frequently used to reduce intracranial pressure on patients with .

The saline triggers an ion imbalance which pulls CSF out of the brain. When this occurs, new CSF delivered by the glymphatic system flows in to take its place, carrying the antibodies with it into brain tissue. The researchers developed a new imaging system by customizing a macroscope to non-invasively observe the proliferation of the antibodies into the brains of the animals.

The researchers believe that this method could be used to not only deliver into the brain large proteins such as antibodies, but also small molecule drugs and viruses used for gene therapies.


https://medicalxpress.com/news/2018-10-method-drugs-brain.html

No comments:

Post a Comment