WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Wednesday, April 24, 2019

How light triggers brain activity

by Ruhr-Universitaet-Bochum April 24, 2019

Max Dreier, Klaus Gerwert and Stefan Tenningkeit (from the left) look at the representation of a protein. Credit: RUB, Kramer


Optogenetics uses light to control brain processes. It is based on light-controlled proteins such as channelrhodopsin-2, an ion channel that opens when it's exposed to light, thus activating cellular processes. In collaboration with colleagues from Humboldt-Universität zu Berlin, the researchers from Ruhr-Universität Bochum (RUB) have now shed light on its mode of action. The team headed by Professor Klaus Gerwert and Professor Peter Hegemann has published its report in PNAS on April 19, 2019.

Enormous therapeutic potential
Researchers consider optogenetics to have enormous therapeutic potential. "It is feasible that  might be used to make see or to treat agitated paralysis in Parkinson's patients," explains Klaus Gerwert.
Discovered by Peter Hegemann, channelrhodopsin-2 is the central light-activated  in optogenetics. If this  is applied to nerve cells, the channels can be opened by light, thus activating the cell.
In the past, scientists could not agree on how the  is activated. "But it is precisely the understanding of the molecular reactions in the protein and of the ionic conductivity resulting thereof that is essential for optimising the protein for its potential applications," says Gerwert.
Two parallel paths
With joined forces, the researchers from Bochum and Berlin figured out how the channel is activated in detail. By combining time-resolved Fourier Transform Infrared Spectroscopy, biomolecular simulations, and electrophysiological experiments, they demonstrated that photoexcitation triggers two different structures—and not, as previously assumed, only one.
 One of them results in the required channel activation that is used in . The parallel path provides merely a weak proton stream; however, the longer exposure, the more it gains the upper hand and suppresses the required channel activation. Accordingly, the optogenetic tool soon starts to lose its effectiveness. "If we block the unwanted parallel path by implementing specific protein design, we could optimise the optogenetic tool considerably," concludes Gerwert.
Conducting research into channelrhodopsin, the Bochum-based researchers drew on their extensive experience regarding the mechanism of the light-driven proton pump bacteriorhodopsin, which they solved in detail several years ago. "Just as in bacteriorhodopsin, protein-bound water molecules play a crucial role in proton conductivity," explains Klaus Gerwert.
More information: Jens Kuhne et al, Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2, Proceedings of the National Academy of Sciences (2019).  DOI: 10.1073/pnas.1818707116

Journal information: Proceedings of the National Academy of Sciences 


Provided by Ruhr-Universitaet-Bochum 

https://medicalxpress.com/news/2019-04-triggers-brain.html


No comments:

Post a Comment