WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Wednesday, March 22, 2017

Study identifies brain cells involved in Pavlovian response

Same neurons malfunction in Parkinson's, Huntington's and Tourette syndrome

Date:
March 22, 2017
Source:
University of California - Los Angeles Health Sciences
Summary:
A new study has traced the Pavlovian response to a small cluster of brain cells -- the same neurons that go awry during Huntington's disease, Parkinson's disease and Tourette's syndrome. The research could one day help neuroscientists find new approaches to diagnosing and treating these disorders.
A study has traced the Pavlovian response to a small cluster of brain cells -- the same neurons that go awry during Huntington's disease, Parkinson's disease and Tourette's syndrome.
Credit: © Sergey Nivens / Fotolia

In his famous experiment, Russian scientist Ivan Pavlov rang a bell each time he fed his dogs. Soon, the dogs began drooling in anticipation when they heard the bell, even before food appeared.
Now, a UCLA study has traced the Pavlovian response to a small cluster of brain cells -- the same neurons that go awry during Huntington's disease, Parkinson's disease and Tourette's syndrome. Published March 22 in the journal Neuron, the research could one day help neuroscientists find new approaches to diagnosing and treating these disorders.
"Species survive because they've learned how to link sensory cues like specific sounds, smells and sights to rewards like food and water," said Sotiris Masmanidis, the study's senior author and an assistant professor of neurobiology at the David Geffen School of Medicine at UCLA. "We wanted to uncover the brain circuitry that encodes reward-based learning and behavior."
The UCLA team focused on cellular activity in the striatum, a part of the brain associated with reward, movement and decision-making.
In a modern version of Pavlov's experiment, Masmanidis and colleagues repeatedly exposed mice to the unfamiliar scent of banana or lemon, followed by a drop of condensed milk. Eventually, the mice learned that the fragrances predicted the arrival of a sweet reward and began fervently licking the air in anticipation.
"The mice learned to associate the new scent with food, just like Pavlov's dogs," said Masmanidis, who is also a member of UCLA's California NanoSystems Institute and Brain Research Institute. "Our next step was to uncover what happens to the Pavlovian response when we silence different groups of cells in the striatum."
Based on clues from earlier studies, the team zeroed in on a tiny group of cells that support the principal neurons in the striatum. Although these supporting players comprise fewer than 2 percent of the cells in the region, the scientists were surprised to discover that they play a disproportionately important role.
"When we switched off the support cells, the mice licked the air in anticipation of the milk only half as often as normal," Masmanidis said. "We suspect that the support cells enhance the brain circuits that encode Pavlovian response."
The support cells' influence appeared strongest when the mice were first learning to pair the unfamiliar scents with a reward. The change was less dramatic in mice who had already mastered the connection.
"These cells were most essential to inexperienced mice who hadn't yet mastered the Pavlovian response," Masmanidis said.
The findings suggest that malfunctioning support cells could lead to neurological disorders, and that restoring the cells' function could eventually help people with these diseases.
More than a century after Pavlov's classic study, there is still much to learn about Pavlovian responses. "Our findings open up exciting opportunities for further studying the roles of different types of neurons in health and disease," said joint first-author Kwang Lee, a UCLA postdoctoral researcher in neurobiology.

Story Source:
Materials provided by University of California - Los Angeles Health SciencesNote: Content may be edited for style and length.

Journal Reference:
  1. Sotiris C. Masmanidis et al. Parvalbumin Interneurons Modulate Striatal Output and Enhance Performance during Associative LearningNeuron, March 2017 DOI: 10.1016/j.neuron.2017.02.033

https://www.sciencedaily.com/releases/2017/03/170322122645.htm

No comments:

Post a Comment