TRANSLATE

Welcome to Our Parkinson's Place


I copy news articles pertaining to research, news and information for Parkinson's disease, Dementia, the Brain, Depression and Parkinson's with Dystonia. I also post about Fundraising for Parkinson's disease and events. I try to be up-to-date as possible. I have Parkinson's
diseases as well and thought it would be nice to have a place where
updated news is in one place. That is why I began this blog.
I am not responsible for it's contents, I am just a copier of information searched on the computer. Please understand the copies are just that, copies and at times, I am unable to enlarge the wording or keep it uniformed as I wish. This is for you to read and to always keep an open mind.
Please discuss this with your doctor, should you have any questions, or concerns. Never do anything without talking to your doctor. I do not make any money from this website. I volunteer my time to help all of us to be informed. Please No advertisers, and No Information about Herbal treatments. This is a free site for all.
Thank you.


Monday, July 24, 2017

Scientists capture first image of major brain receptor in action

July 24, 2017

Structures of the ion channel of the glutamate receptor in the closed (left, blue) and open (right, orange) states viewed parallel (top) or perpendicular (bottom) to the membrane, from the extracellular (synaptic) side. Credit: Sobolevsky lab/Columbia University Medical Center


Columbia University Medical Center (CUMC) researchers have captured the first three-dimensional snapshots of the AMPA-subtype glutamate receptor in action. The receptor, which regulates most electrical signaling in the brain, is involved in several important brain activities, including memory and learning.
The findings were published today in Nature.
"With our new findings, we can now, for the first time, visualize how the  opens  ion channels," said Alexander Sobolevsky, PhD, associate professor of biochemistry and  at Columbia and senior author of the paper. "This is the fundamental process that directly affects learning and memory, and finding its structural determinants has been the primary goal of molecular neuroscience since the '90s."
Most signaling in the brain is triggered by , a neurotransmitter that activates proteins on the surface of neurons called glutamate receptors. Glutamate receptors underlie a variety of high cognitive functions, including learning and memory. AMPA receptors are glutamate receptors that open and close very quickly—in less than a millisecond—and are involved in fast processes in the brain, such as the rapid perception and reaction of an organism to its surrounding environment.
Previously, the Sobolevsky lab deciphered the structures of the AMPA receptor alone and in complex with other proteins that regulate the speed and strength of synaptic connections. In the current study, the researchers captured the AMPA receptor in action, as glutamate activates the receptor to allow ions to flow through its channel and initiate signaling in the brain. This provides the first precise insights into how receptors mediate brain function.

Cryo-electron micrograph (left) and 3-D structural reconstruction (right) of the activated glutamate receptor synaptic complex with stargazin (STZ). Credit: Sobolevsky lab/Columbia University Medical Center

To freeze the AMPA receptor in an active state, the researchers fused it with stargazin, a regulatory protein that prompts the channel to open. The images they captured show that when signaling molecules such as glutamate are present, the entrance to the AMPA receptor, which consists of four units, opens up like a camera's iris, or aperture, to reveal its pore. To shepherd the ions through, the receptor widens the diameter of its channel, and a specialized channel pore lining ushers the ions into the cell.
"These new fundamental discoveries have implications for our understanding of neurotransmission by glutamate, our brain's major neurotransmitter" says Edward C. Twomey, a PhD candidate at CUMC and first author of the paper. "Understanding these processes will impact future studies on glutamate receptor signaling in neurodegenerative diseases as well as drug design."
To study the receptor, Sobolevksy's team used cryo-electron microscopy, a technique that captures an array of two-dimensional images of a molecule and combines them into a three-dimensional structural image. The method was pioneered by co-author Joachim Frank, PhD, professor of biochemistry and molecular biophysics and of biological sciences at CUMC.
Defects in glutamate , or the processes they mediate, are implicated in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis and glaucoma; psychiatric disorders such as anxiety, depression, schizophrenia, and drug use disorders; as well as in acute disorders such as  trauma and stroke. The new structure of an active AMPA receptor and understanding of the activating mechanism create a solid platform for developing therapeutics to treat neurological disorders that are associated with glutamate receptor dysfunction.
More information: Edward C. Twomey et al. Channel opening and gating mechanism in AMPA-subtype glutamate receptors, Nature (2017). DOI: 10.1038/nature23479 
Journal reference: Nature
https://medicalxpress.com/news/2017-07-scientists-capture-image-major-brain.html

No comments:

Post a Comment