WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Thursday, June 7, 2018

New Biosensor May Shed Light on Molecular Processes Involved in Parkinson’s

 JUNE 7, 2018 BY ALICE MELÃO 





New sensors with increased sensitivity and specificity to detect interactions between proteins, fat molecules, and other biological elements, represent a powerful tool to investigate mechanisms linked to human diseases, such as Alzheimer’s or Parkinson’s.
The way biomolecules react and interact with each other is crucial to sustain normal cellular function, and to ensure all cellular mechanisms are properly working. This comprises mechanisms such as molecular signaling and transport in cells that require insertion of proteins with the cell lipid membrane.
Until now, available label-free techniques were not able to differentiate simple cellular processes such as protein insertion, chemical release and membrane disruption. As such, researchers had to rely on multiple experimental methods to analyze and understand the processes taking place within cells.
This not only made the experimental setting more complex, it also made it more difficult to integrate all data into single response models.
To overcome these challenges, a team led by researchers at Ecole Polytechnique Fédérale de Lausanne in Switzerland developed a new biosensor system.
The mid-infrared biosensor has the capacity to access the distinct chemical fingerprint information of proteins, lipids, or other biochemical compounds in complex biological samples while monitoring their dynamic interactions.
A major advantage of this new technology is that it allows scientists to preform complex analysis without destroying samples, in real-time, and with high sensitivity.
The team tested the potential of the biosensor to evaluate the molecular changes of cell membranes and tiny vesicles loaded neurotransmitter molecules (responsible for communication between brain nerve cells) upon exposure to melittin, the major toxic component of the honeybee venom.
The biosensor allowed researchers to monitor the disruptive mechanisms triggered by melittin in real-time and without requiring any additional process of molecule labeling.
The team could track the processes by which melittin induced membrane disruption and neurotransmitter cargo release from the vesicles.
“Our sensor opens up exciting possibilities for gaining new insights into biological processes such as signaling or transport in basic research as well as provides a valuable toolkit for bioanalytical and pharmaceutical applications,” researchers wrote.
These findings pave the way to apply this biosensor to several research fields, and investigate important mechanisms linked to human diseases, such as pore formation and membrane disruption induced by protein aggregates in neurodegenerative diseases.
https://parkinsonsnewstoday.com/2018/06/07/new-biosensor-targets-molecular-processes-involved-parkinsons/

No comments:

Post a Comment