WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Wednesday, July 25, 2018

Newly identified target may help with drug discovery for chronic inflammatory diseases

July 25, 2018

Public sample off of the web


Inflammation is part of the body's natural healing process. But when it becomes chronic, inflammation can lead to cancer, Alzheimer's disease and other conditions. Inflammasomes—protein-based molecular machines—trigger inflammation in response to different signals generated by cell stress, tissue injury or infectious organisms.

In a study published online July 25 in the journal Nature, University of California San Diego School of Medicine researchers identified a signaling pathway that activates the NLRP3 inflammasome implicated in several severe chronic inflammatory disorders.

"It has been obvious for some time that, when available, drugs that turn off the NLRP3 inflammasome, but not other inflammasomes, will be very useful for treating a variety of inflammatory disorders, from osteoarthritis to Alzheimer's disease and cancer," said Zhenyu Zhong, Ph.D., first author and UC San Diego School of Medicine postdoctoral researcher. "Until now, it was not clearly understood how environmental stress and  activate the NLRP3 inflammasome and, without such knowledge, it was impossible to rationally design specific inhibitors of the NLRP3 inflammasome."

Interleukin 1β (IL-1β) is an inflammatory cytokine or hormone responsible for beneficial and adverse effects of . Normally, IL-1β is produced in very low amounts, but in response to injury, , infection or chronic inflammation, production of IL-1β is highly increased.

Production and secretion of IL-1β is regulated by inflammasomes. In addition to an enzyme called caspase-1, inflammasomes contain sensor proteins that respond to different signals generated by , tissue injury or . One of the most important and versatile sensors is NLRP3, which is responsible for  activation and IL-1β production in response to tissue injury or different microparticles, including asbestos and silica dust. NLRP3 activators include microcrystals of cholesterol or uric acid, which trigger the inflammation associated with atherosclerosis or gout, respectively.

Working with Michael Karin, Ph.D., Distinguished Professor of Pharmacology and Pathology, Zhong and colleagues describe the critical role that the enzyme cytosine monophosphate kinase 2 (CMPK2) plays in the activation of NLRP3 and IL-1β production and subsequently in chronic inflammatory disorders. CMPK2 belongs to a family of enzymes called nucleotide kinases, some of whose members have already been successfully targeted by the pharmaceutical industry.

"I predict that specific inhibitors of CMPK2 can be easily and rapidly developed," said Karin, senior author. "Once available, such compounds may provide us with new treatments for many diverse untreatable and common illnesses, including osteoarthritis, Alzheimer's disease and lung cancer."

According to Karin, in gout and osteoarthritis CMPK2 inhibitors might reduce inflammation, pain and tissue damage. In Alzheimer's and Parkinson's, they may slow progression and loss of cognitive function.

A recent, unaffiliated trial showed that administering an antibody targeting IL-1β reduces the likelihood of a second cardiac infarction in patients who already have undergone one heart attack. Further analysis of the data found that it had an even greater positive effect in patients with lung cancer, Karin said.

"Unlike IL-1β antibody, which blocks IL-1β that is produced in response to bacterial infections, the CMPK2 inhibitor will only prevent IL-1β induction in response to tissue injury or micro particles," said Karin.

More information: Zhenyu Zhong et al, New mitochondrial DNA synthesis enables NLRP3 inflammasome activation, Nature (2018).  DOI: 10.1038/s41586-018-0372-z

Journal reference: Nature 


https://medicalxpress.com/news/2018-07-newly-drug-discovery-chronic-inflammatory.html

No comments:

Post a Comment