WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Monday, June 20, 2016

The dopamine advantage

June 20, 2016,

Anchored transmission at dopamine synapse. Credit: Masahiko WATANABE, Hokkaido University

The junctions between nerve cells responsible for releasing and receiving dopamine in the brain are a surprising mismatch that gives this chemical a strong competitive advantage.
Neurons are cells that transmit nerve impulses. Dopamine  are the main source of the  in the central nervous system and are few in number compared to other types of neurons in the brain. They occupy an inner part of the brain, called the striatum, and play an important function in influencing emotions, motivation, voluntary movements and cognition. Dopamine deficiency is associated with a number of diseases including Parkinson's disease, addiction and depression. 
Dopamine neurons located in the midbrain form junctions, or "synapses", on one of the main kinds of , called medium spiny neurons. In theory, dopamine molecules released from their neurons should be received on the other end of the synapse by the medium spiny neurons. However, the  on medium spiny neurons are found relatively far away from the synaptic sites. Thus it's been unclear how dopaminergic transmission works.
Researchers at Hokkaido University in Japan studied the molecular and anatomical composition of dopamine synapses in adult mice. They "tagged" molecules known to be expressed by these synapses, allowing them to visualize how they are expressed and how they localize. 
By doing this, they found that one side of the dopamine synapse, unsurprisingly, is "dopaminergic", producing chemicals that are essential for . The other side of the synapse, however, was surprisingly found to be "GABAergic". GABA is a chemical that exerts an inhibitory effect on neurons. GABA deficiency leads to hyperexcitability of neurons, such as is the case in epilepsy. This was the first time for researchers to discover this kind of a mismatch present on either side of dopaminergic synapses.
Further investigation led the team to find that the protein neuroligin-2 played an important role in the dopamine synapse. When they cancelled-out its function in mice brains, the density of  synapses on medium spiny neurons decreased while the density of GABAergic synapses increased. This suggests that neuroligin-2, which is expressed by the GABAergic side of the synapse, works as an anchor that stabilizes the mismatched junction, giving a competitive advantage to dopaminergic synapses over GABAergic 
"Before this finding, researchers thought that synaptic transmission occurred between neurochemically-matched presynapses and postsynapses, because without this matching, neural information can not be delivered from one to the other. Our finding disrupts this rule," says Hokkaido University anatomist Masahiko Watanabe. "Instead, we found dopaminergic presynapses make use of neuroligin-2, which connects them to GABAergic postsynapses, anchoring and stabilizing them. This is a novel form of inter-neuronal contact, which is not for synaptic transmission, but to recruit particular inputs to their appropriate targets."
More information: Motokazu Uchigashima et al. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures, Proceedings of the National Academy of Sciences (2016). DOI: 10.1073/pnas.1514074113 

http://medicalxpress.com/news/2016-06-dopamine-advantage.html

No comments:

Post a Comment