WELCOME TO OUR PARKINSON'S PLACE!

I HAVE PARKINSON'S DISEASES AND THOUGHT IT WOULD BE NICE TO HAVE A PLACE WHERE THE CONTENTS OF UPDATED NEWS IS FOUND IN ONE PLACE. THAT IS WHY I BEGAN THIS BLOG.

I COPY NEWS ARTICLES PERTAINING TO RESEARCH, NEWS AND INFORMATION FOR PARKINSON'S DISEASE, DEMENTIA, THE BRAIN, DEPRESSION AND PARKINSON'S WITH DYSTONIA. I ALSO POST ABOUT FUNDRAISING FOR PARKINSON'S DISEASE AND EVENTS. I TRY TO BE UP-TO-DATE AS POSSIBLE.

I AM NOT RESPONSIBLE FOR IT'S CONTENTS. I AM JUST A COPIER OF INFORMATION SEARCHED ON THE COMPUTER. PLEASE UNDERSTAND THE COPIES ARE JUST THAT, COPIES AND AT TIMES, I AM UNABLE TO ENLARGE THE WORDING OR KEEP IT UNIFORMED AS I WISH. IT IS IMPORTANT TO UNDERSTAND I AM A PERSON WITH PARKINSON'S DISEASE. I HAVE NO MEDICAL EDUCATION,

I JUST WANT TO SHARE WITH YOU WHAT I READ ON THE INTERNET. IT IS UP TO YOU TO DECIDE WHETHER TO READ IT AND TALK IT OVER WITH YOUR DOCTOR. I AM JUST THE COPIER OF DOCUMENTS FROM THE COMPUTER. I DO NOT HAVE PROOF OF FACT OR FICTION OF THE ARTICLE. I ALSO TRY TO PLACE A LINK AT THE BOTTOM OF EACH ARTICLE TO SHOW WHERE I RECEIVED THE INFORMATION SO THAT YOU MAY WANT TO VISIT THEIR SITE.

THIS IS FOR YOU TO READ AND TO ALWAYS KEEP AN OPEN MIND.

PLEASE DISCUSS THIS WITH YOUR DOCTOR, SHOULD YOU HAVE ANY QUESTIONS, OR CONCERNS. NEVER DO ANYTHING WITHOUT TALKING TO YOUR DOCTOR FIRST..

I DO NOT MAKE ANY MONEY FROM THIS WEBSITE. I VOLUNTEER MY TIME TO HELP ALL OF US TO BE INFORMED.

I WILL NOT ACCEPT ANY ADVERTISEMENT OR HEALING POWERS, HEALING FROM HERBS AND ETC. UNLESS IT HAS GONE THROUGH TRIALS AND APPROVED BY FDA. IT WILL GO INTO SPAM.

THIS IS A FREE SITE FOR ALL WITH NO ADVERTISEMENTS

THANK YOU FOR VISITING! TOGETHER WE CAN MAKE A DIFFERENCE!

TRANSLATE

Friday, May 10, 2019

Nanotubes enable travel of Huntington's protein

MAY 10, 2019     by The Scripps Research Institute

Scripps Research neuroscientists Srinivasa Subramaniam, PhD, and Manish Sharma, PhD, review confocal microscope images of the Huntington's protein moving between neurons via nanotube. Credit: Scripps Research


A toxic protein linked to Huntington's disease can move from neuron to neuron through a nanotube tunnel whose construction is initiated by a protein called Rhes, say scientists at Scripps ResearchThe finding, by Scripps Research neuroscientist Srinivasa Subramaniam, Ph.D., improves understanding of how and why this  attacks and destroys certain . The research was published Friday, May 10 in the Journal of Cell Biology.

"We are excited about this result because it may explain why the patient gets the disease in this area of the brain called the striatum," says Subramaniam, an associate professor in the Department of Neuroscience at Scripps Research-Florida.
People with Huntington's disease inherit a damaged protein that is somehow complicit in destroying brain cells. Scientists discovered this protein in 1993 but are still piecing together its role in this degenerative disease. Scans show Huntington's disease brains are shrunken and degraded. As the neurons deteriorate, people lose motor control, they can have emotional problems and their thinking and memory suffer. Symptoms usually begin around age 30 to 40 and last 15 to 20 years until death. A rarer and more aggressive form of the disease affects children, cutting their childhood and lives short.
About 3 to 7 people out of 100,000 have the disease and it has mostly affected those with European ancestry. However, Subramaniam believes the disease is underreported in other areas, including India.
"There is a lot of stigma associated with the disease," says Subramaniam.
His laboratory investigates the molecular mechanics of Huntington's disease and other neurodegenerative illnesses, including Alzheimer's and Parkinson's disease, to find potential therapy targets.
"In the case of Huntington's, the question is can we block this transport, and does it have any benefit or effect?" says Subramaniam.
For this study, Subramaniam and colleague Manish Sharma, Ph.D., looked at mouse neurons under a  and saw that the cells formed sticky, string-like protrusions around 150 microns long which floated above the cells, connecting them.
"When I saw Rhes making these tunnel-like tubes between the cells I was excited and at the same time perplexed," says Sharma, the first author of the study.
"They may have been missed before because they are on a different plane," says Subramaniam. "You have to be really looking for it. It's like a bridge over a lake. If you are on the lake, you may not see the bridge above, but if you are on shore, you can see the bridge."
Scientists first described another type of tunneling nanotube in rat neurons in 2004. Since then, a number of researchers have observed them in cancer and other types of cells. But how they form and what they do was less clear.
To find out, Subramaniam and Sharma tracked cell cargo moving through this tunnel bridge. They inserted the Huntington human disease protein into the mouse brain cells, tagged it with fluorescence and then watched as it crossed over and crawled up to enter the neighboring cell. Once the tunnel delivered its shipment it released and sprang back. Lysosomes and endosomes, cellular cargo bins that transport cell pieces or waste, also travel these intercellular highways, Subramaniam says.
The Rhes protein exists in both mouse and human brains sick with Huntington's disease. Knocking out the Rhes gene in diseased mice results in less brain damage. In 2009 study, Subramaniam found that Rhes also alters the Huntington disease protein's structure making it more toxic to .
"The Rhes protein makes its own road. That is what is surprising to us," says Subramaniam. "But it not only transports itself. Once the road is made, many things can be transported."
Subramaniam's group continues to investigate what other proteins may be helping with tunnel construction and if other disease proteins move along these membranous highways. His laboratory is also developing ways to identify how the Huntington's disease  travels in the live brain.
More information: Manish Sharma et al. Rhes travels from cell to cell and transports Huntington disease protein via TNT-like protrusion, The Journal of Cell Biology (2019). DOI: 10.1083/jcb.201807068
Journal information: Journal of Cell Biology 
https://medicalxpress.com/news/2019-05-nanotubes-enable-huntington-protein.html

No comments:

Post a Comment